NumFlat 0.3.1

There is a newer version of this package available.
See the version list below for details.
dotnet add package NumFlat --version 0.3.1                
NuGet\Install-Package NumFlat -Version 0.3.1                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="NumFlat" Version="0.3.1" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add NumFlat --version 0.3.1                
#r "nuget: NumFlat, 0.3.1"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install NumFlat as a Cake Addin
#addin nuget:?package=NumFlat&version=0.3.1

// Install NumFlat as a Cake Tool
#tool nuget:?package=NumFlat&version=0.3.1                

NumFlat

NumFlat is a numerical computation library for C#. The goal of this project is to create an easy-to-use C# wrapper for OpenBLAS. It aims to enable writing numerical computation processes related to linear algebra in natural C# code.

Overview

NumFlat provides types named Vec<T> and Mat<T> for representing vectors and matrices. These type names are intentionally chosen to avoid confusion with vector and matrix types (like Vector<T>) from the System.Numerics namespace. Various linear algebra-related operations can be performed on these types through operator overloading and extension methods.

Vec<T> and Mat<T> can hold numerical types that implement the INumberBase<T> interface, which was newly added in .NET 7. The primary supported types are float, double, and Complex. Other types can be used as well, but support beyond simple arithmetic operations is not provided.

Installation

The NuGet package is available.

Install-Package NumFlat

This package does not include the native binary for OpenBLAS. The OpenBlasSharp.Windows package provides the native binary for Windows.

Install-Package OpenBlasSharp.Windows

Or, download the compiled binary and put libopenblas.dll in the same directory as the executable file. Binaries for both x86 and x64 architectures are supported, but the ILP64 build with the x64-64 suffix is not supported.

All the classes are in the NumFlat namespace.

using NumFlat;

Usage

Create a new vector

A new vector can be created by listing elements inside [].

Code
// Create a new vector.
Vec<double> vector = [1, 2, 3];

// Show the vector.
Console.WriteLine(vector);
Output
Vector 3-Double
1
2
3

Create a new vector from IEnumerable<T>

Vectors can also be created from objects that implement IEnumerable<T>. Since the vector itself is an IEnumerable<T>, it is also possible to call LINQ methods on the vector if needed.

Code
// Some enumerable.
var enumerable = Enumerable.Range(0, 10).Select(i => i / 10.0);

// Create a vector from an enumerable.
var vector = enumerable.ToVector();

// Show the vector.
Console.WriteLine(vector);
Output
Vector 10-Double
  0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Indexer access for vectors

Elements in a vector can be accessed or modified through the indexer.

Code
// Create a new vector.
var vector = new Vec<double>(3);

// Element-wise access.
vector[0] = 4;
vector[1] = 5;
vector[2] = 6;

// Show the vector.
Console.WriteLine(vector);
Output
Vector 3-Double
4
5
6

Vector arithmetic

Basic operations on vectors are provided through operator overloading and extension methods.

Code
// Some vectors.
Vec<double> x = [1, 2, 3];
Vec<double> y = [4, 5, 6];

// Addition.
var add = x + y;

// Subtraction.
var sub = x - y;

// Multiplication by a scalar.
var ms = x * 3;

// Division by a scalar.
var ds = x / 3;

// Pointwise multiplication.
var pm = x.PointwiseMul(y);

// Pointwise division.
var pd = x.PointwiseDiv(y);

// Dot product.
var dot = x * y;

// Outer product.
var outer = x.Outer(y);

// L2 norm.
var l2Norm = x.Norm();

// L1 norm.
var l1Norm = x.L1Norm();

// Infinity norm.
var infinityNorm = x.InfinityNorm();

// Normalization.
var normalized = x.Normalize();

Subvector

A subvector can be created from a vector. The subvector acts as a view of the original vector, and changes to the subvector will affect the original vector.

Code
// Some vector.
Vec<double> x = [3, 3, 3, 3, 3];

// Create a subvector of the vector.
var sub = x.Subvector(2, 3);

// Modify the subvector.
sub[0] = 100;

// Show the original vector.
Console.WriteLine(x);
Output
Vector 5-Double
  3
  3
100
  3
  3

Creating matrix

Matrices can be generated from 2D arrays.

Code
// The source array.
var array = new double[,]
{
    { 1, 2, 3 },
    { 4, 5, 6 },
    { 7, 8, 9 },
};

// Creat a new matrix.
var matrix = array.ToMatrix();

// Show the matrix.
Console.WriteLine(matrix);
Output
Matrix 3x3-Double
1  2  3
4  5  6
7  8  9

Indexer access for matrices

Elements in a matrix can be accessed or modified through the indexer.

Code
// Creat a new matrix.
var matrix = new Mat<double>(3, 3);

// Element-wise access.
for (var row = 0; row < matrix.RowCount; row++)
{
    for (var col = 0; col < matrix.ColCount; col++)
    {
        matrix[row, col] = 10 * row + col;
    }
}

// Show the matrix.
Console.WriteLine(matrix);
Output
Matrix 3x3-Double
 0   1   2
10  11  12
20  21  22

Matrix arithmetic

Basic operations on matrices are provided through operator overloading and extension methods.

Code
// Some matrices.
var x = new double[,]
{
    { 1, 2, 3 },
    { 0, 1, 2 },
    { 0, 0, 1 },
}
.ToMatrix();

var y = new double[,]
{
    { 1, 0, 0 },
    { 2, 1, 0 },
    { 3, 2, 1 },
}
.ToMatrix();

// Addition.
var add = x + y;

// Subtraction.
var sub = x - y;

// Multiplication.
var mul = x * y;

// Multiplication by a scalar.
var ms = x * 3;

// Division by a scalar.
var ds = x / 3;

// Pointwise multiplication.
var pm = x.PointwiseMul(y);

// Pointwise division.
var pd = x.PointwiseDiv(y);

// Transposition.
var transposed = x.Transpose();

// Trace.
var trace = x.Trace();

// Determinant.
var determinant = x.Determinant();

// Rank.
var rank = x.Rank();

// Inverse.
var inverse = x.Inverse();

// Pseudo-inverse.
var pseudoInverse = x.PseudoInverse();

// L1 norm.
var l1Norm = x.L1Norm();

// L2 norm.
var l2Norm = x.L2Norm();

// Infinity norm.
var infinityNorm = x.InfinityNorm();

Submatrix

A submatrix can be created from a matrix. The submatrix acts as a view of the original matrix, and changes to the submatrix will affect the original matrix.

Code
// Creat a new matrix.
var x = new Mat<double>(5, 5);
x.Fill(3);

// Create a submatrix of the matrix.
var sub = x.Submatrix(2, 2, 3, 3);

// Modify the subvector.
sub[0, 0] = 100;

// Show the original matrix.
Console.WriteLine(x);
Output
Matrix 5x5-Double
3  3    3  3  3
3  3    3  3  3
3  3  100  3  3
3  3    3  3  3
3  3    3  3  3

Treat matrix as a set of vectors

Views of rows or columns as vectors can be obtained through the Rows or Cols properties. Similar to a submatrix, changes to the view will affect the original matrix. These properties implement IEnumerable<Vec<T>>, allowing for LINQ methods to be called on collections of vectors.

Code
// Some matrix.
var x = new double[,]
{
    { 1, 2, 3 },
    { 4, 5, 6 },
    { 7, 8, 9 },
}
.ToMatrix();

// Create a view of a row of the matrix.
Vec<double> row = x.Rows[0];

// Create a view of a column of the matrix.
Vec<double> col = x.Cols[1];

// Convert a matrix to a row-major jagged array.
var array = x.Rows.Select(row => row.ToArray()).ToArray();

// Enumerate all the elements in column-major order.
var elements = x.Cols.SelectMany(col => col);

// The mean vector of the row vectors.
var rowMean = x.Rows.Mean();

// The covariance matrix of the column vectors.
var colCov = x.Cols.Covariance();

LU decomposition

The LU decomposition can be obtained by calling the extension method Lu().

Code
// Some matrix.
var x = new double[,]
{
    { 1, 2, 3 },
    { 1, 4, 9 },
    { 1, 3, 7 },
}
.ToMatrix();

// Do LU decomposition.
var decomposition = x.Lu();

// Decomposed matrices.
var p = decomposition.GetPermutationMatrix();
var l = decomposition.L;
var u = decomposition.U;

// Reconstruct the matrix.
var reconstructed = p * l * u;

// Show the reconstructed matrix.
Console.WriteLine(reconstructed);
Output
Matrix 3x3-Double
1  2  3
1  4  9
1  3  7

QR decomposition

The QR decomposition can be obtained by calling the extension method Qr().

Code
// Some matrix.
var x = new double[,]
{
    { 1, 2, 3 },
    { 4, 5, 6 },
    { 7, 8, 9 },
}
.ToMatrix();

// Do QR decomposition.
var decomposition = x.Qr();

// Decomposed matrices.
var q = decomposition.Q;
var r = decomposition.R;

// Reconstruct the matrix.
var reconstructed = q * r;

// Show the reconstructed matrix.
Console.WriteLine(reconstructed);
Output
Matrix 3x3-Double
1  2  3
4  5  6
7  8  9

Cholesky decomposition

The Cholesky decomposition can be obtained by calling the extension method Cholesky().

Code
// Some matrix.
var x = new double[,]
{
    { 3, 2, 1 },
    { 2, 3, 2 },
    { 1, 2, 3 },
}
.ToMatrix();

// Do Cholesky decomposition.
var decomposition = x.Cholesky();

// Decomposed matrix.
var l = decomposition.L;

// Reconstruct the matrix.
var reconstructed = l * l.Transpose();

// Show the reconstructed matrix.
Console.WriteLine(reconstructed);
Output
Matrix 3x3-Double
1  2  3
4  5  6
7  8  9

Singular value decomposition

The singular value decomposition can be obtained by calling the extension method Svd().

Code
// Some matrix.
var x = new double[,]
{
    { 1, 2, 3 },
    { 4, 5, 6 },
    { 7, 8, 9 },
}
.ToMatrix();

// Do SVD.
var decomposition = x.Svd();

// Decomposed matrices.
var s = decomposition.S.ToDiagonalMatrix();
var u = decomposition.U;
var vt = decomposition.VT;

// Reconstruct the matrix.
var reconstructed = u * s * vt;

// Show the reconstructed matrix.
Console.WriteLine(reconstructed);
Output
Matrix 3x3-Double
1  2  3
4  5  6
7  8  9

Todo

  • ✅ OpenBLAS wrapper (see OpenBlasSharp)
  • ✅ Vector operations
    • ✅ Builder
    • ✅ Indexer
    • ✅ Subvector
    • ✅ Copy, Fill, Clear
    • ✅ Arithmetic operations
    • ✅ Dot and Outer products
    • ✅ Norm and normalization
    • ✅ In-place operations
  • ✅ Matrix operations
    • ✅ Builder
    • ✅ Indexer
    • ✅ Submatrix
    • ✅ Copy, Fill, Clear
    • ✅ Arithmetic operations
    • ✅ Transposition
    • ✅ Trace
    • ✅ Determinant
    • ✅ Rank
    • ✅ Inversion
    • ✅ Pseudo-inverse
    • ✅ Norm
    • ✅ In-place operations
  • ✅ Matrix Decomposition
    • ✅ LU
    • ✅ QR
    • ✅ Cholesky
    • ✅ SVD
    • ✅ EVD
    • ✅ GEVD
  • ⬜ LINQ-like operations
    • ⬜ Mean, Variance, Covariance for scalars
    • ✅ Mean, Variance, Covariance for vectors
    • ✅ Mean, Variance for matrices
    • ⬜ Weighted Mean, Variance, Covariance for scalars
    • ✅ Weighted Mean, Variance, Covariance for vectors
    • ⬜ Weighted Mean, Variance for matrices
    • ⬜ Higher-order statistics
  • ⬜ Multivariate analysis
    • ⬜ Linear regression
    • ⬜ PCA
    • ⬜ LDA
    • ⬜ ICA
    • ⬜ NMF
  • ⬜ Distributions
    • ⬜ Gaussian
  • ⬜ Clustering
    • ⬜ k-means
    • ⬜ GMM
  • ⬜ Time series
    • ⬜ HMM
  • ⬜ DSP
    • ⬜ FFT
    • ⬜ Filtering

License

NumFlat depends on the following libraries.

NumFlat is available under MIT license.

Product Compatible and additional computed target framework versions.
.NET net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.0.0 184 8/16/2024
0.10.8 115 8/8/2024
0.10.7 84 8/4/2024
0.10.6 80 7/25/2024
0.10.5 107 7/23/2024
0.10.4 117 7/21/2024
0.10.3 111 7/20/2024
0.10.2 111 7/15/2024
0.10.1 99 7/15/2024
0.10.0 115 7/10/2024
0.9.7 110 6/30/2024
0.9.6 125 6/22/2024
0.9.5 101 6/8/2024
0.9.4 109 5/23/2024
0.9.3 86 5/2/2024
0.9.2 122 4/14/2024
0.9.1 110 4/1/2024
0.9.0 136 3/27/2024
0.8.1 131 3/4/2024
0.8.0 119 3/3/2024
0.7.7 149 3/1/2024
0.7.6 116 2/29/2024
0.7.5 123 2/29/2024
0.7.4 119 2/27/2024
0.7.3 118 2/26/2024
0.7.2 113 2/25/2024
0.7.1 121 2/25/2024
0.7.0 128 2/22/2024
0.6.2 124 2/19/2024
0.6.1 120 2/19/2024
0.6.0 119 2/18/2024
0.5.0 126 2/17/2024
0.4.0 122 2/17/2024
0.3.2 130 2/12/2024
0.3.1 142 2/10/2024
0.3.0 141 2/10/2024
0.2.2 127 2/8/2024
0.2.1 131 2/7/2024
0.2.0 114 2/7/2024
0.1.1 120 2/4/2024
0.1.0 120 2/4/2024