NumFlat 0.1.0
See the version list below for details.
dotnet add package NumFlat --version 0.1.0
NuGet\Install-Package NumFlat -Version 0.1.0
<PackageReference Include="NumFlat" Version="0.1.0" />
paket add NumFlat --version 0.1.0
#r "nuget: NumFlat, 0.1.0"
// Install NumFlat as a Cake Addin #addin nuget:?package=NumFlat&version=0.1.0 // Install NumFlat as a Cake Tool #tool nuget:?package=NumFlat&version=0.1.0
NumFlat
NumFlat is a numerical computation library for C#. The goal of this project is to create an easy-to-use C# wrapper for OpenBLAS. It aims to enable writing numerical computation processes related to linear algebra in natural C# code.
Installation
To be prepared 😖
Overview
NumFlat provides types named Vec<T>
and Mat<T>
for representing vectors and matrices.
These type names are intentionally chosen to avoid confusion with vector and matrix types from the System.Numerics
namespace.
Vec<T>
and Mat<T>
can hold numerical types that implement the INumberBase<T>
interface.
The primary supported types are float
, double
, and Complex
.
Other types can be used as well, but support beyond simple arithmetic operations is not provided.
Usage
Create a new vector
A new vector can be created by listing elements inside []
.
Code
// Create a new vector.
Vec<double> vector = [1, 2, 3];
// Show the vector.
Console.WriteLine(vector);
Output
Vector 3-Double
1
2
3
Create a new vector from IEnumerable<T>
Vectors can also be created from objects that implement IEnumerable<T>
.
Since the vector itself is an IEnumerable<T>
, it is also possible to call LINQ methods on the vector if needed.
Code
// Some enumerable.
var enumerable = Enumerable.Range(0, 10).Select(i => i / 10.0);
// Create a vector from an enumerable.
var vector = enumerable.ToVector();
// Show the vector.
Console.WriteLine(vector);
Output
Vector 10-Double
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Indexer access for vectors
Elements in a vector can be accessed or modified through the indexer.
Code
// Create a new vector.
var vector = new Vec<double>(3);
// Element-wise access.
vector[0] = 4;
vector[1] = 5;
vector[2] = 6;
// Show the vector.
Console.WriteLine(vector);
Output
Vector 3-Double
4
5
6
Vector arithmetic
Basic operations on vectors are provided through operator overloading and extension methods.
Code
// Some vectors.
Vec<double> x = [1, 2, 3];
Vec<double> y = [4, 5, 6];
// Addition.
var add = x + y;
// Subtraction.
var sub = x - y;
// Multiplication by a scalar.
var ms = x * 3;
// Division by a scalar.
var ds = x / 3;
// Pointwise multiplication.
var pm = x.PointwiseMul(y);
// Pointwise division.
var pd = x.PointwiseDiv(y);
// Dot product.
var dot = x * y;
// Outer product.
var outer = x.Outer(y);
Subvector
A subvector can be created from a vector. The subvector acts as a view of the original vector, and changes to the subvector will affect the original vector.
Code
// Some vector.
Vec<double> x = [3, 3, 3, 3, 3];
// Create a subvector of the vector.
var sub = x.Subvector(2, 3);
// Modify the subvector.
sub[0] = 100;
// Show the original vector.
Console.WriteLine(x);
Output
Vector 5-Double
3
3
100
3
3
Creating matrix
Matrices can be generated from 2D arrays.
Code
// The source array.
var array = new double[,]
{
{ 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 },
};
// Creat a new matrix.
var matrix = array.ToMatrix();
// Show the matrix.
Console.WriteLine(matrix);
Output
Matrix 3x3-Double
1 2 3
4 5 6
7 8 9
Indexer access for matrices
Elements in a matrix can be accessed or modified through the indexer.
Code
// Creat a new matrix.
var matrix = new Mat<double>(3, 3);
// Element-wise access.
for (var row = 0; row < matrix.RowCount; row++)
{
for (var col = 0; col < matrix.ColCount; col++)
{
matrix[row, col] = 10 * row + col;
}
}
// Show the matrix.
Console.WriteLine(matrix);
Output
Matrix 3x3-Double
0 1 2
10 11 12
20 21 22
Matrix arithmetic
Basic operations on matrices are provided through operator overloading and extension methods.
Code
// Some matrices.
var x = new double[,]
{
{ 1, 2, 3 },
{ 0, 1, 2 },
{ 0, 0, 1 },
}
.ToMatrix();
var y = new double[,]
{
{ 1, 0, 0 },
{ 2, 1, 0 },
{ 3, 2, 1 },
}
.ToMatrix();
// Addition.
var add = x + y;
// Subtraction.
var sub = x - y;
// Multiplication.
var mul = x * y;
// Multiplication by a scalar.
var ms = x * 3;
// Division by a scalar.
var ds = x / 3;
// Pointwise multiplication.
var pm = x.PointwiseMul(y);
// Pointwise division.
var pd = x.PointwiseDiv(y);
// Transposition.
var transposed = x.Transpose();
// Trace.
var trace = x.Trace();
// Determinant.
var determinant = x.Determinant();
// Rank.
var rank = x.Rank();
// Inverse.
var inverse = x.Inverse();
// Pseudo-inverse.
var pseudoInverse = x.PseudoInverse();
Submatrix
A submatrix can be created from a matrix. The submatrix acts as a view of the original matrix, and changes to the submatrix will affect the original matrix.
Code
// Creat a new matrix.
var x = new Mat<double>(5, 5);
x.Fill(3);
// Create a submatrix of the matrix.
var sub = x.Submatrix(2, 2, 3, 3);
// Modify the subvector.
sub[0, 0] = 100;
// Show the original matrix.
Console.WriteLine(x);
Output
Matrix 5x5-Double
3 3 3 3 3
3 3 3 3 3
3 3 100 3 3
3 3 3 3 3
3 3 3 3 3
Treat matrix as a set of vectors
Views of rows or columns as vectors can be obtained through the Rows
or Cols
properties.
Similar to a submatrix, changes to the view will affect the original matrix.
These properties implement IEnumerable<Vec<T>>
, allowing for LINQ methods to be called on collections of vectors.
Code
// Some matrix.
var x = new double[,]
{
{ 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 },
}
.ToMatrix();
// Create a view of a row of the matrix.
Vec<double> row = x.Rows[0];
// Create a view of a column of the matrix.
Vec<double> col = x.Cols[1];
// Convert a matrix to a row-major jagged array.
var array = x.Rows.Select(row => row.ToArray()).ToArray();
// Enumerate all the elements in column-major order.
var elements = x.Cols.SelectMany(col => col);
// The mean vector of the row vectors.
var rowMean = x.Rows.Mean();
// The covariance matrix of the column vectors.
var colCov = x.Cols.Covariance();
LU decomposition
The LU decomposition can be obtained by calling the extension method Lu()
.
Code
// Some matrix.
var x = new double[,]
{
{ 1, 2, 3 },
{ 1, 4, 9 },
{ 1, 3, 7 },
}
.ToMatrix();
// Do LU decomposition.
var lu = x.Lu();
// Decomposed matrices.
var p = lu.GetP();
var l = lu.GetL();
var u = lu.GetU();
// Reconstruct the matrix.
var reconstructed = p * l * u;
// Show the reconstructed matrix.
Console.WriteLine(reconstructed);
Output
Matrix 3x3-Double
1 2 3
1 4 9
1 3 7
QR decomposition
The QR decomposition can be obtained by calling the extension method Qr()
.
Code
// Some matrix.
var x = new double[,]
{
{ 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 },
}
.ToMatrix();
// Do QR decomposition.
var qr = x.Qr();
// Decomposed matrices.
var q = qr.Q;
var r = qr.R;
// Reconstruct the matrix.
var reconstructed = q * r;
// Show the reconstructed matrix.
Console.WriteLine(reconstructed);
Output
Matrix 3x3-Double
1 2 3
4 5 6
7 8 9
Cholesky decomposition
The Cholesky decomposition can be obtained by calling the extension method Cholesky()
.
Code
// Some matrix.
var x = new double[,]
{
{ 3, 2, 1 },
{ 2, 3, 2 },
{ 1, 2, 3 },
}
.ToMatrix();
// Do Cholesky decomposition.
var cholesky = x.Cholesky();
// Decomposed matrix.
var l = cholesky.L;
// Reconstruct the matrix.
var reconstructed = l * l.Transpose();
// Show the reconstructed matrix.
Console.WriteLine(reconstructed);
Output
Matrix 3x3-Double
1 2 3
4 5 6
7 8 9
Singular value decomposition
The singular value decomposition can be obtained by calling the extension method Svd()
.
Code
// Some matrix.
var x = new double[,]
{
{ 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 },
}
.ToMatrix();
// Do SVD.
var svd = x.Svd();
// Decomposed matrices.
var s = svd.S.ToDiagonalMatrix();
var u = svd.U;
var vt = svd.VT;
// Reconstruct the matrix.
var reconstructed = u * s * vt;
// Show the reconstructed matrix.
Console.WriteLine(reconstructed);
Output
Matrix 3x3-Double
1 2 3
4 5 6
7 8 9
Todo
- ✅ OpenBLAS wrapper (see OpenBlasSharp)
- ⬜ Vector operations
- ✅ Indexer
- ✅ Subvector
- ✅ Copy, fill, clear
- ✅ Arithmetic operations
- ✅ Dot and outer products
- ⬜ Norm and normalization
- ⬜ Matrix operations
- ✅ Indexer
- ✅ Submatrix
- ✅ Copy, fill, clear
- ✅ Arithmetic operations
- ✅ Transposition
- ✅ Trace
- ✅ Determinant
- ✅ Rank
- ✅ Inversion
- ✅ Pseudo-inverse
- ⬜ Norm
- ⬜ Matrix Decomposition
- ✅ LU
- ✅ QR
- ✅ Cholesky
- ✅ SVD
- ⬜ EVD
- ⬜ GEVD
- ⬜ LINQ-like operations
- ✅ Mean
- ✅ Covariance
- ⬜ Weighted mean
- ⬜ Weighted covariance
- ⬜ Higher-order statistics
- ⬜ Multivariate analysis
- ⬜ Linear regression
- ⬜ PCA
- ⬜ LDA
- ⬜ ICA
- ⬜ NMF
- ⬜ Clustering
- ⬜ k-means
- ⬜ GMM
- ⬜ DSP
- ⬜ FFT
- ⬜ Filtering
License
NumFlat depends on the following libraries.
NumFlat is available under MIT license.
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net8.0 is compatible. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. net9.0 was computed. net9.0-android was computed. net9.0-browser was computed. net9.0-ios was computed. net9.0-maccatalyst was computed. net9.0-macos was computed. net9.0-tvos was computed. net9.0-windows was computed. |
-
net8.0
- OpenBlasSharp (>= 0.3.2)
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.
Version | Downloads | Last updated |
---|---|---|
1.0.0 | 192 | 8/16/2024 |
0.10.8 | 115 | 8/8/2024 |
0.10.7 | 84 | 8/4/2024 |
0.10.6 | 80 | 7/25/2024 |
0.10.5 | 107 | 7/23/2024 |
0.10.4 | 119 | 7/21/2024 |
0.10.3 | 113 | 7/20/2024 |
0.10.2 | 112 | 7/15/2024 |
0.10.1 | 102 | 7/15/2024 |
0.10.0 | 118 | 7/10/2024 |
0.9.7 | 111 | 6/30/2024 |
0.9.6 | 126 | 6/22/2024 |
0.9.5 | 102 | 6/8/2024 |
0.9.4 | 110 | 5/23/2024 |
0.9.3 | 87 | 5/2/2024 |
0.9.2 | 123 | 4/14/2024 |
0.9.1 | 111 | 4/1/2024 |
0.9.0 | 137 | 3/27/2024 |
0.8.1 | 132 | 3/4/2024 |
0.8.0 | 120 | 3/3/2024 |
0.7.7 | 150 | 3/1/2024 |
0.7.6 | 117 | 2/29/2024 |
0.7.5 | 124 | 2/29/2024 |
0.7.4 | 120 | 2/27/2024 |
0.7.3 | 119 | 2/26/2024 |
0.7.2 | 114 | 2/25/2024 |
0.7.1 | 122 | 2/25/2024 |
0.7.0 | 133 | 2/22/2024 |
0.6.2 | 127 | 2/19/2024 |
0.6.1 | 123 | 2/19/2024 |
0.6.0 | 120 | 2/18/2024 |
0.5.0 | 127 | 2/17/2024 |
0.4.0 | 123 | 2/17/2024 |
0.3.2 | 131 | 2/12/2024 |
0.3.1 | 143 | 2/10/2024 |
0.3.0 | 142 | 2/10/2024 |
0.2.2 | 128 | 2/8/2024 |
0.2.1 | 132 | 2/7/2024 |
0.2.0 | 115 | 2/7/2024 |
0.1.1 | 121 | 2/4/2024 |
0.1.0 | 121 | 2/4/2024 |