vcortex 1.0.0

dotnet add package vcortex --version 1.0.0                
NuGet\Install-Package vcortex -Version 1.0.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="vcortex" Version="1.0.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add vcortex --version 1.0.0                
#r "nuget: vcortex, 1.0.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install vcortex as a Cake Addin
#addin nuget:?package=vcortex&version=1.0.0

// Install vcortex as a Cake Tool
#tool nuget:?package=vcortex&version=1.0.0                

vcortex

Lightweight & high performance CPU/GPU machine learning library for .NET, designed for neural network training and inference.

<p align="center"> <div style="width:640;height:320"> <img style="width: inherit" src="./banner.png"> </div> </p>

Image Classification Quickstart

Setting up a neural network for image classification tasks.

// Define the input structure
var inputConfig = new ConvolutionInputConfig
{
    Width = 28,         // Image width in pixels
    Height = 28,        // Image height in pixels
    Grayscale = true    // True for grayscale images, false for RGB
};

// Define your networks architecture
var network = new NetworkBuilder(inputConfig)
    .Add(new Convolution
    {
        Activation = ActivationType.LeakyRelu,    // Activation function
        KernelSize = 3,                           // Width/height of convolutional filter
        KernelsPerChannel = 32,                   // Number of filters per input channel
        Padding = 1,                              // Padding added to image borders
        Stride = 1                                // Step size of the filter
    })
    .Add(new Maxpool
    {
        PoolSize = 2                              // Size of the pooling window
    })
    .Add(new Dense
    {
        Activation = ActivationType.LeakyRelu,    // Activation function for dense layer
        Neurons = 128                             // Number of neurons in dense layer
    })
    .Add(new Dropout
    {
        DropoutRate = 0.2f                        // Dropout rate for regularization
    })
    .Add(new Softmax
    {
        Neurons = 10                              // Number of output classes
    })
    .Build();

Regression Quickstart

Setting up a neural network for regression tasks.

// Define the input structure
var inputConfig = new ConnectedInputConfig()
{
    NumInputs = 32,         // Number of inputs
};

// Define your networks architecture
var network = new NetworkBuilder(inputConfig)
    .Add(new Dense
    {
        Activation = ActivationType.Sigmoid,    // Activation function for dense layer
        Neurons = 128                           // Number of neurons in dense layer
    })
    .Add(new Dense
    {
        Activation = ActivationType.Sigmoid,    // Activation function for dense layer
        Neurons = 32                            // Number of neurons in dense layer
    })
    .Build();

Training / Testing Quickstart

Training and testing a neural network

// Define the training parameters   
var trainingConfig = new TrainConfig
{
    Epochs = 20,                                  // Total training iterations over dataset
    Scheduler = new ExponentialDecay()
    {
        InitialLearningRate = 0.001f,             // Starting learning rate
        DecayRate = 0.05f                         // Rate at which learning rate decays
    },
    Optimizer = new Adam(),                       // Optimization algorithm
    LossFunction = LossFunction.Mse,              // Loss function to minimize
    BatchSize = 100                               // Number of samples per training batch
};

// Create a CPU trainer
var trainer = new CpuNetworkTrainer(network, trainingConfig);
// Or create a GPU trainer
var trainer = new GpuNetworkTrainer(GpuType.Cuda, 0, net, trainingConfig);

// Initialize the trainable parameters to random values
trainer.InitRandomParameters();                    // Randomize model parameters
// Train
var trainData = new List<(float[] input, float[] output)>();
trainer.Train(trainData);                          // Train model on training data
// Test
var testData = new List<(float[] input, float[] output)>();
trainer.Test(testData, 0.1f);                      // Test model on test data

Persistence

Save and load network architecture and parameters.

// Load the network architecture from disk
var network = NetworkConfig.DeserializeFromDisk("./network.json");
// Save the network architecture to disk
network.SerializeToDisk("./network.json");

// Load the network parameters from disk
trainer.SaveParametersToDisk("./weights.bin");
// Save the network parameters to disk
trainer.ReadParametersFromDisk("./weights.bin");

// Load the network parameters into an array
float[] parameters = trainer.GetParameters();  // Retrieve network parameters as array
// Load the network parameters from an array
trainer.LoadParameters(parameters);            // Load parameters from an array

Layers

Common neural network layer configurations.

Convolution

Configuration for convolutional layer used for feature extraction in image data.

{
    "$type": "convolution",           # Specifies layer type as convolutional
    "stride": 1,                      # Filter movement per step
    "padding": 1,                     # Padding pixels around the image border
    "kernels_per_channel": 32,        # Number of filters per input channel
    "kernel_size": 3,                 # Size of each filter (e.g., 3x3)
    "activation": 2                   # Activation function type
}

Dense

Configuration for a fully connected (dense) layer used to combine features from previous layers.

{
    "$type": "dense",                 # Specifies layer type as dense
    "activation": 2,                  # Activation function type
    "neurons": 128                    # Number of neurons in the dense layer
}

Dropout

Configuration for dropout layer used for regularization to prevent overfitting.

{
    "$type": "dropout",               # Specifies layer type as dropout
    "dropout_rate": 0.2               # Fraction of units to drop
}

Maxpool

Configuration for max pooling layer used to reduce spatial dimensions.

{
    "$type": "maxpool",               # Specifies layer type as max pooling
    "pool_size": 2                    # Size of the pooling filter
}

Softmax

Configuration for softmax layer used in the output for classification tasks.

{
    "$type": "softmax",               # Specifies layer type as softmax for output
    "neurons": 10                     # Number of output classes
}

Optimizers

Configurable algorithms for optimizing model weights.

AdaDelta

Optimizer that adapts learning rate based on a moving window of gradient updates.

{
    "$type": "adadelta",              # AdaDelta optimizer type
    "rho": 0.1,                       # Decay rate for squared gradient
    "epsilon": 1E-08                  # Small constant for numerical stability
}

AdaGrad

Optimizer that adapts learning rates for each parameter based on past gradients.

{
    "$type": "adagrad",               # AdaGrad optimizer type
    "epsilon": 1E-08                  # Small constant for numerical stability
}

Adam

Popular optimizer that combines momentum and adaptive learning rates for fast convergence.

{
    "$type": "adam",                  # Adam optimizer type
    "beta1": 0.9,                     # Exponential decay rate for first moment
    "beta2": 0.999,                   # Exponential decay rate for second moment
    "epsilon": 1E-08                  # Small constant for numerical stability
}

RmsProp

Optimizer that adjusts learning rate by dividing by a running average of gradients.

{
    "$type": "rmsprop",               # RMSProp optimizer type
    "rho": 0.1,                       # Decay rate for moving average of squared gradient
    "epsilon": 1E-08                  # Small constant for numerical stability
}

Sgd

Stochastic Gradient Descent, a traditional optimizer using a fixed learning rate.

{
    "$type": "sgd"                    # Stochastic Gradient Descent optimizer
}

SgdMomentum

SGD variant that incorporates momentum to accelerate convergence.

{
    "$type": "sgdmomentum",           # SGD with momentum optimizer type
    "momentum": 0.1                   # Momentum factor to accelerate SGD
}

Learning rate schedulers

Adjust learning rate dynamically during training.

Constant

Scheduler with a fixed learning rate across all training epochs.

{
    "$type": "constant",              # Constant learning rate scheduler
    "lr": 0.01                        # Fixed learning rate value
}

ExponentialDecay

Scheduler that gradually decreases learning rate exponentially over time.

{
    "$type": "exponential_decay",     # Exponential decay scheduler
    "lr": 0.01,                       # Initial learning rate
    "decay": 0.05                     # Decay factor applied per epoch
}

StepDecay

Scheduler that reduces the learning rate at set intervals during training.

{
    "$type": "step_decay",            # Step decay scheduler
    "lr": 0.01,                       # Initial learning rate
    "step": 10,                       # Epoch interval for decay
    "decay": 0.5                      # Factor by which to decrease learning rate
}

Loss functions

Functions to calculate error between predicted and true labels.

CrossEntropyLoss

Loss function used in classification tasks; compares model's predicted probabilities to true class labels.

Mse

Mean Squared Error loss function used in regression tasks; measures accuracy by averaging squared prediction errors.

Training Config

Defines the training parameters and configuration for optimizing the neural network.

{
  "epochs": 20,                     # Total number of training epochs or iterations over the dataset
  "lr_schedule": {                  
    "$type": "exponential_decay",   # Type of learning rate scheduler (e.g., exponential decay)
    "lr": 0.001,                    # Initial learning rate to be used at the start of training
    "decay": 0.05                   # Rate at which the learning rate decreases each epoch
  },
  "optimizer": {                    
    "$type": "adam",                # Optimization algorithm type (e.g., Adam)
    "beta1": 0.9,                   # Exponential decay rate for the first moment estimates (Adam)
    "beta2": 0.999,                 # Exponential decay rate for the second moment estimates (Adam)
    "epsilon": 1E-08                # Small constant for numerical stability in Adam optimizer
  },
  "loss": 0,                        # Loss function identifier (e.g., 0 for MSE, 1 for CrossEntropy)
  "batch": 100                      # Size of each batch of data samples during training
}

Product Compatible and additional computed target framework versions.
.NET net8.0 is compatible.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (2)

Showing the top 2 NuGet packages that depend on vcortex:

Package Downloads
vcortex.cpu

Lightweight and high performance CPU/GPU machine learning library for .NET, designed for neural network training and inference.

vcortex.gpu

Lightweight and high performance CPU/GPU machine learning library for .NET, designed for neural network training and inference.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.0.0 111 11/14/2024