nanoFramework.Iot.Device.Bno055 1.1.92.53000

Prefix Reserved
There is a newer version of this package available.
See the version list below for details.
dotnet add package nanoFramework.Iot.Device.Bno055 --version 1.1.92.53000                
NuGet\Install-Package nanoFramework.Iot.Device.Bno055 -Version 1.1.92.53000                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="nanoFramework.Iot.Device.Bno055" Version="1.1.92.53000" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add nanoFramework.Iot.Device.Bno055 --version 1.1.92.53000                
#r "nuget: nanoFramework.Iot.Device.Bno055, 1.1.92.53000"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install nanoFramework.Iot.Device.Bno055 as a Cake Addin
#addin nuget:?package=nanoFramework.Iot.Device.Bno055&version=1.1.92.53000

// Install nanoFramework.Iot.Device.Bno055 as a Cake Tool
#tool nuget:?package=nanoFramework.Iot.Device.Bno055&version=1.1.92.53000                

BNO055 - inertial measurement unit

Those sensors are intelligent 9-axis absolute orientation sensors. Most of the implementations are using I2C sensors but the sensor supports as well HID over I2C and serial port communication. This class only supports I2C.

All operations for a current usage has been developed. The individual interruption level settings for each sensor has not been implemented. If needed, they are quite straight forward to implement.

Documentation

BNO055

BNO055 datasheet

You will find this device as "Inertial Measurement Unit" or "Adafruit BNO055 Absolute Orientation Sensor"

Usage

Important: make sure you properly setup the I2C pins especially for ESP32 before creating the I2cDevice, make sure you install the nanoFramework.Hardware.ESP32 nuget:

//////////////////////////////////////////////////////////////////////
// when connecting to an ESP32 device, need to configure the I2C GPIOs
// used for the bus
Configuration.SetPinFunction(21, DeviceFunction.I2C1_DATA);
Configuration.SetPinFunction(22, DeviceFunction.I2C1_CLOCK);

For other devices like STM32, please make sure you're using the preset pins for the I2C bus you want to use.

Create a Bno055Sensor class and pass the I2C device. The default I2C address is provided in the class.

I2cDevice i2cDevice = I2cDevice.Create(new I2cConnectionSettings(1, Bno055Sensor.DefaultI2cAddress));
Bno055Sensor bno055Sensor = new Bno055Sensor(i2cDevice);
Debug.WriteLine($"Id: {bno055Sensor.Info.ChipId}, AccId: {bno055Sensor.Info.AcceleratorId}, GyroId: {bno055Sensor.Info.GyroscopeId}, MagId: {bno055Sensor.Info.MagnetometerId}");
Debug.WriteLine($"Firmware version: {bno055Sensor.Info.FirmwareVersion}, Bootloader: {bno055Sensor.Info.BootloaderVersion}");
Debug.WriteLine($"Temperature source: {bno055Sensor.TemperatureSource}, Operation mode: {bno055Sensor.OperationMode}, Units: {bno055Sensor.Units}");
Debug.WriteLine($"Powermode: {bno055Sensor.PowerMode}");

You can easily access the sensor information and settings thru the properties.

Calibration

To get accurate measurement, it is better to wait for the Magnetometer to calibrate. As in your phone, when the calibration is needed, it is necessary to move the sensor in the air to help for the calibration.

The following code shows how to check the calibration:

Debug.WriteLine("Checking the magnetometer calibration, move the sensor up to the calibration will be complete if needed");
var calibrationStatus = bno055Sensor.GetCalibrationStatus();
while ((calibrationStatus & CalibrationStatus.MagnetometerSuccess) != (CalibrationStatus.MagnetometerSuccess))
{
    Debug.Write($".");
    calibrationStatus = bno055Sensor.GetCalibrationStatus();
    Thread.Sleep(200);
}

Debug.WriteLine();
Debug.WriteLine("Calibration completed");

Please note that it is not really necessary to check the calibration of the other sensors and the system. The qualibraiton is done all the time. The important one is the Magnetometer.

Accessing sensor data

Simply access the various sensor data thru their properties. Note that it is better to read at once the data and then display them, or manipulate them rather than accessing the sub element every time. The reason is because in the first case, you'll do 1 measurement and the data will be consistent, in the second case, you'll do 1 measurement every time you access 1 sub property which means, the data will be inconsistent.

Wrong way:

// Data will be inconsistent in this case!
// Do not access the data like this
Debug.WriteLine($"Magnetometer X: {bno055Sensor.Magnetometer.X} Y: {bno055Sensor.Magnetometer.Y} Z: {bno055Sensor.Magnetometer.Z}");

Good way:

// First read and store the data
var magneto = bno055Sensor.Magnetometer;
// Then manipulate the data
Debug.WriteLine($"Magnetometer X: {magneto.X} Y: {magneto.Y} Z: {magneto.Z}");

The sensor offers 9-axis measurement. Here is an example showing all the sensor properties you can access:

while(true)
{
    var magneto = bno055Sensor.Magnetometer;
    Debug.WriteLine($"Magnetometer X: {magneto.X} Y: {magneto.Y} Z: {magneto.Z}");
    var gyro = bno055Sensor.Gyroscope;
    Debug.WriteLine($"Gyroscope X: {gyro.X} Y: {gyro.Y} Z: {gyro.Z}");
    var accele = bno055Sensor.Accelerometer;
    Debug.WriteLine($"Acceleration X: {accele.X} Y: {accele.Y} Z: {accele.Z}");
    var orien = bno055Sensor.Orientation;
    Debug.WriteLine($"Orientation Heading: {orien.X} Roll: {orien.Y} Pitch: {orien.Z}");
    var line = bno055Sensor.LinearAcceleration;
    Debug.WriteLine($"Linear acceleration X: {line.X} Y: {line.Y} Z: {line.Z}");
    var gravity = bno055Sensor.Gravity;
    Debug.WriteLine($"Gravity X: {gravity.X} Y: {gravity.Y} Z: {gravity.Z}");
    var qua = bno055Sensor.Quaternion;
    Debug.WriteLine($"Quaternion X: {qua.X} Y: {qua.Y} Z: {qua.Z} W: {qua.W}");
    var temp = bno055Sensor.Temperature.Celsius;
    Debug.WriteLine($"Temperature: {temp} °C");
    Thread.Sleep(100);
}

Information regarding sensors and units

  • Orientation:

    • Absolute Orientation (Euler Vector, 100Hz)

    • Three axis orientation data based on a 360° sphere

    • Heading = Vector3.X; Roll = Vector3.Y; Pitch = Vector3.Z

    • Units availabel are Degrees (default) or Radians, you can change with

      bno055Sensor.Units = bno055Sensor.Units | Units.EulerAnglesRadians;
      
  • Quaternion

    • Absolute Orientation (Quaterion, 100Hz)
    • Four point quaternion output for more accurate data manipulation
    • Unit is 1 Quaternion = 2^14 returned data
  • Magnetometer

    • Magnetic Field Strength Vector (20Hz)
    • Three axis of magnetic field sensing in micro Tesla (uT)
  • Acceleration

    • Acceleration Vector (100Hz)
    • Three axis of acceleration (gravity + linear motion)
    • Default unit in m/s^2, can be changed for mg
  • LinearAcceleration

    • Linear Acceleration Vector (100Hz)
    • Three axis of linear acceleration data (acceleration minus gravity)
    • Default unit in m/s^2, can be changed for mg
  • Gravity

    • Gravity Vector (100Hz)
    • Three axis of gravitational acceleration (minus any movement)
    • Default unit in m/s^2, can be changed for mg
  • Gyroscope

    • Angular Velocity Vector (100Hz)
    • Three axis of 'rotation speed'
    • Default unit is Degree per second but can be changed to Radian per second
  • Temperature

    • Temperature (1Hz)

    • Ambient temperature in degrees celsius

    • Default can be changed for Farenheit

    • Temperature can be measured thru the Gyroscope or the Accelerometer

    • Precision seems better with the Gyroscope, so it is set by default. You can change the source like this:

      bno055Sensor.TemperatureSource = TemperatureSource.Accelerometer;
      

Sensor data calibration

You can get and set the sensor data qualibration. Every sensor which permit the operation has a function to get the calibration data and set the calibration data.

This is an example of how to get and set the calibration data for the Accelerometer.

Vector4 calib = bno055Sensor.GetAccelerometerCalibrationData();
// Change, transform the calibration data
bno055Sensor.SetAccelerometerCalibrationData(calib);

Remapping the accelerometer axis

It is possible to remap the acceleroter axis as well as get their configuration.

For example, you can change the X axis for a negative signe likle this:

var axisMap = bno055Sensor.GetAxisMap();
axisMap[0].Sign = AxisSign.Negative;
bno055Sensor.SetAxisMap(axisMap[0], axisMap[1], axisMap[2]);

In the returned array, X is the first element, Y the second and Z the last one.

Product Compatible and additional computed target framework versions.
.NET Framework net is compatible. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.2.639 91 9/6/2024
1.2.631 85 8/28/2024
1.2.613 115 8/9/2024
1.2.601 70 7/26/2024
1.2.590 93 7/17/2024
1.2.573 105 6/19/2024
1.2.570 98 6/14/2024
1.2.560 107 5/29/2024
1.2.548 111 5/15/2024
1.2.536 111 4/15/2024
1.2.514 122 3/22/2024
1.2.494 109 2/28/2024
1.2.474 127 1/24/2024
1.2.462 162 1/5/2024
1.2.458 147 12/20/2023
1.2.436 159 11/10/2023
1.2.416 110 11/8/2023
1.2.403 143 10/6/2023
1.2.396 117 9/27/2023
1.2.384 163 9/6/2023
1.2.378 156 8/16/2023
1.2.369 164 8/2/2023
1.2.363 145 7/28/2023
1.2.357 155 7/19/2023
1.2.354 143 7/14/2023
1.2.345 170 6/21/2023
1.2.341 161 6/14/2023
1.2.337 162 6/7/2023
1.2.335 161 6/2/2023
1.2.329 146 5/26/2023
1.2.313 149 5/12/2023
1.2.302 171 5/10/2023
1.2.297 161 5/3/2023
1.2.273 236 3/17/2023
1.2.267 251 3/10/2023
1.2.263 257 3/8/2023
1.2.259 236 2/27/2023
1.2.256 262 2/24/2023
1.2.253 251 2/22/2023
1.2.222 319 1/9/2023
1.2.217 340 1/6/2023
1.2.212 326 1/5/2023
1.2.208 314 1/3/2023
1.2.203 324 12/28/2022
1.2.159 398 11/14/2022
1.2.153 385 11/5/2022
1.2.141 405 10/25/2022
1.2.128 423 10/22/2022
1.2.122 462 10/12/2022
1.2.114 407 10/8/2022
1.2.95 460 9/22/2022
1.2.87 527 9/15/2022
1.2.73 423 9/8/2022
1.2.63 429 9/3/2022
1.2.47 453 8/15/2022
1.2.40 448 8/6/2022
1.2.38 450 8/5/2022
1.2.32 450 8/2/2022
1.2.28 465 8/1/2022
1.2.13 472 7/24/2022
1.2.10 453 7/23/2022
1.1.145.58726 469 7/7/2022
1.1.133.52556 464 6/30/2022
1.1.121.35854 484 6/26/2022
1.1.116.8772 463 6/24/2022
1.1.113.2032 459 6/23/2022
1.1.102.51394 431 6/15/2022
1.1.99.36719 460 6/14/2022
1.1.97.17326 455 6/13/2022
1.1.92.53000 454 6/8/2022
1.1.72.29765 435 5/31/2022
1.1.64.21380 464 5/26/2022
1.1.58.10097 475 5/23/2022
1.1.54.28879 472 5/23/2022
1.1.40 479 5/5/2022
1.1.3 496 4/15/2022
1.1.1 473 4/14/2022
1.0.300 482 3/31/2022
1.0.288-preview.114 121 3/25/2022
1.0.288-preview.113 119 3/25/2022
1.0.288-preview.106 111 3/23/2022
1.0.288-preview.104 107 3/22/2022
1.0.288-preview.103 106 3/21/2022
1.0.288-preview.100 117 3/19/2022
1.0.288-preview.99 124 3/18/2022
1.0.288-preview.98 114 3/18/2022
1.0.288-preview.95 126 3/15/2022
1.0.288-preview.93 112 3/15/2022
1.0.288-preview.87 114 3/10/2022
1.0.288-preview.86 116 3/8/2022
1.0.288-preview.77 119 2/27/2022
1.0.288-preview.75 107 2/26/2022
1.0.288-preview.65 111 2/18/2022
1.0.288-preview.63 112 2/16/2022
1.0.288-preview.61 119 2/12/2022
1.0.288-preview.58 109 2/10/2022
1.0.288-preview.53 112 2/9/2022
1.0.288-preview.48 130 2/4/2022
1.0.288-preview.41 123 1/31/2022
1.0.288-preview.29 124 1/28/2022
1.0.288-preview.20 128 1/27/2022
1.0.288-preview.19 118 1/27/2022
1.0.288-preview.18 126 1/27/2022
1.0.288-preview.5 122 1/24/2022
1.0.288-preview.3 119 1/21/2022
1.0.288-preview.1 117 1/21/2022
1.0.272 154 1/10/2022
1.0.259 348 12/9/2021
1.0.258 348 12/7/2021
1.0.218 190 10/18/2021
1.0.157 366 9/4/2021
1.0.155 347 8/31/2021
1.0.153 357 8/14/2021
1.0.151 362 8/6/2021
1.0.146 355 7/22/2021
1.0.130 150 7/6/2021
1.0.127 173 7/5/2021
1.0.125 189 7/5/2021
1.0.12 187 5/21/2021