TYoshimura.DoubleDouble 2.8.3

There is a newer version of this package available.
See the version list below for details.
dotnet add package TYoshimura.DoubleDouble --version 2.8.3
                    
NuGet\Install-Package TYoshimura.DoubleDouble -Version 2.8.3
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="TYoshimura.DoubleDouble" Version="2.8.3" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="TYoshimura.DoubleDouble" Version="2.8.3" />
                    
Directory.Packages.props
<PackageReference Include="TYoshimura.DoubleDouble" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add TYoshimura.DoubleDouble --version 2.8.3
                    
#r "nuget: TYoshimura.DoubleDouble, 2.8.3"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#addin nuget:?package=TYoshimura.DoubleDouble&version=2.8.3
                    
Install as a Cake Addin
#tool nuget:?package=TYoshimura.DoubleDouble&version=2.8.3
                    
Install as a Cake Tool

DoubleDouble

Double-Double Arithmetic and Special Function Implements

Requirement

.NET 6.0

Install

Download DLL
Download Nuget

More Precision ?

MultiPrecision

Type

type mantissa bits significant digits
ddouble 104 30

Epsilon: 2^-968 = 4.00833e-292
MaxValue : 2^1024 = 1.79769e308

Functions

function domain mantissa error bits note usage
sqrt [0,+inf) 2 ddouble.Sqrt(x)
cbrt (-inf,+inf) 2 ddouble.Cbrt(x)
log2 (0,+inf) 2 ddouble.Log2(x)
log (0,+inf) 3 ddouble.Log(x)
log10 (0,+inf) 3 ddouble.Log10(x)
log1p (-1,+inf) 3 log(1+x) ddouble.Log1p(x)
pow2 (-inf,+inf) 1 ddouble.Pow2(x)
pow (-inf,+inf) 2 ddouble.Pow(x, y)
pow10 (-inf,+inf) 2 ddouble.Pow10(x)
exp (-inf,+inf) 2 ddouble.Exp(x)
expm1 (-inf,+inf) 2 exp(x)-1 ddouble.Expm1(x)
sin (-inf,+inf) 2 ddouble.Sin(x)
cos (-inf,+inf) 2 ddouble.Cos(x)
tan (-inf,+inf) 3 ddouble.Tan(x)
sinpi (-inf,+inf) 1 sin(πx) ddouble.SinPI(x)
cospi (-inf,+inf) 1 cos(πx) ddouble.CosPI(x)
tanpi (-inf,+inf) 2 tan(πx) ddouble.TanPI(x)
sinh (-inf,+inf) 2 ddouble.Sinh(x)
cosh (-inf,+inf) 2 ddouble.Cosh(x)
tanh (-inf,+inf) 2 ddouble.Tanh(x)
asin [-1,1] 2 Accuracy deteriorates near x=-1,1. ddouble.Asin(x)
acos [-1,1] 2 Accuracy deteriorates near x=-1,1. ddouble.Acos(x)
atan (-inf,+inf) 2 ddouble.Atan(x)
atan2 (-inf,+inf) 2 ddouble.Atan2(y, x)
arsinh (-inf,+inf) 2 ddouble.Arsinh(x)
arcosh [1,+inf) 2 ddouble.Arcosh(x)
artanh (-1,1) 4 Accuracy deteriorates near x=-1,1. ddouble.Artanh(x)
sinc (-inf,+inf) 2 ddouble.Sinc(x, normalized)
sinhc (-inf,+inf) 3 ddouble.Sinhc(x)
gamma (-inf,+inf) 2 Accuracy deteriorates near non-positive intergers. If x is Natual number lass than 35, an exact integer value is returned. ddouble.Gamma(x)
loggamma (0,+inf) 4 ddouble.LogGamma(x)
digamma (-inf,+inf) 4 Near the positive zero point, polynomial interpolation is used. ddouble.Digamma(x)
polygamma (-inf,+inf) 4 Accuracy deteriorates near non-positive intergers. n ≤ 16 ddouble.Polygamma(n, x)
inverse_gamma [1,+inf) 4 gamma^-1(x) ddouble.InverseGamma(x)
lower_incomplete_gamma [0,+inf) 4 nu ≤ 128 ddouble.LowerIncompleteGamma(nu, x)
upper_incomplete_gamma [0,+inf) 4 nu ≤ 128 ddouble.UpperIncompleteGamma(nu, x)
beta [0,+inf) 4 ddouble.Beta(a, b)
incomplete_beta [0,1] 4 Accuracy decreases when the radio of a,b is too large. a,b ≤ 64 ddouble.IncompleteBeta(x, a, b)
erf (-inf,+inf) 3 ddouble.Erf(x)
erfc (-inf,+inf) 3 ddouble.Erfc(x)
inverse_erf (-1,1) 3 ddouble.InverseErf(x)
inverse_erfc (0,2) 3 ddouble.InverseErfc(x)
erfi (-inf,+inf) 4 ddouble.Erfi(x)
dawson_f (-inf,+inf) 4 ddouble.DawsonF(x)
bessel_j [0,+inf) 4 Accuracy deteriorates near zero points. abs(nu) ≤ 8 ddouble.BesselJ(nu, x)
bessel_y [0,+inf) 4 Accuracy deteriorates near zero points. abs(nu) ≤ 8 ddouble.BesselY(nu, x)
bessel_i [0,+inf) 4 abs(nu) ≤ 8 ddouble.BesselI(nu, x)
bessel_k [0,+inf) 4 abs(nu) ≤ 8 ddouble.BesselK(nu, x)
struve_h (-inf,+inf) 4 0 ≤ n ≤ 8 ddouble.StruveH(n, x)
struve_k [0,+inf) 4 0 ≤ n ≤ 8 ddouble.StruveK(n, x)
struve_l (-inf,+inf) 4 0 ≤ n ≤ 8 ddouble.StruveL(n, x)
struve_m [0,+inf) 4 0 ≤ n ≤ 8 ddouble.StruveM(n, x)
elliptic_k [0,1] 4 k: elliptic modulus, m=k^2 ddouble.EllipticK(m)
elliptic_e [0,1] 4 k: elliptic modulus, m=k^2 ddouble.EllipticE(m)
elliptic_pi [0,1] 4 k: elliptic modulus, m=k^2 ddouble.EllipticPi(n, m)
incomplete_elliptic_k [0,2pi] 4 k: elliptic modulus, m=k^2 ddouble.EllipticK(x, m)
incomplete_elliptic_e [0,2pi] 4 k: elliptic modulus, m=k^2 ddouble.EllipticE(x, m)
incomplete_elliptic_pi [0,2pi] 4 k: elliptic modulus, m=k^2 Argument order follows wolfram. ddouble.EllipticPi(n, x, m)
elliptic_theta (-inf,+inf) 4 a=1...4, q ≤ 0.995 ddouble.EllipticTheta(a, x, q)
kepler_e (-inf,+inf) 6 inverse kepler's equation, e(eccentricity) ≤ 128 ddouble.KeplerE(m, e, centered)
agm [0,+inf) 2 ddouble.Agm(a, b)
fresnel_c (-inf,+inf) 4 ddouble.FresnelC(x)
fresnel_s (-inf,+inf) 4 ddouble.FresnelS(x)
ei (-inf,+inf) 4 exponential integral ddouble.Ei(x)
ein (-inf,+inf) 4 complementary exponential integral ddouble.Ein(x)
li [0,+inf) 5 logarithmic integral li(x)=ei(log(x)) ddouble.Li(x)
si (-inf,+inf) 4 sin integral, limit_zero=true: si(x) ddouble.Si(x, limit_zero)
ci [0,+inf) 4 cos integral ddouble.Ci(x)
shi (-inf,+inf) 5 hyperbolic sin integral ddouble.Shi(x)
chi [0,+inf) 5 hyperbolic cos integral ddouble.Chi(x)
lambert_w [-1/e,+inf) 4 ddouble.LambertW(x)
airy_ai (-inf,+inf) 5 Accuracy deteriorates near zero points. ddouble.AiryAi(x)
airy_bi (-inf,+inf) 5 Accuracy deteriorates near zero points. ddouble.AiryBi(x)
jacobi_sn (-inf,+inf) 4 k: elliptic modulus, m=k^2 ddouble.JacobiSn(x, m)
jacobi_cn (-inf,+inf) 4 k: elliptic modulus, m=k^2 ddouble.JacobiCn(x, m)
jacobi_dn (-inf,+inf) 4 k: elliptic modulus, m=k^2 ddouble.JacobiDn(x, m)
jacobi_amplitude (-inf,+inf) 4 k: elliptic modulus, m=k^2 ddouble.JacobiAm(x, m)
inverse_jacobi_sn [-1,+1] 4 k: elliptic modulus, m=k^2 ddouble.JacobiArcSn(x, m)
inverse_jacobi_cn [-1,+1] 4 k: elliptic modulus, m=k^2 ddouble.JacobiArcCn(x, m)
inverse_jacobi_dn [0,1] 4 k: elliptic modulus, m=k^2 ddouble.JacobiArcDn(x, m)
carlson_rd [0,+inf) 4 ddouble.CarlsonRD(x, y, z)
carlson_rc [0,+inf) 4 ddouble.CarlsonRC(x, y)
carlson_rf [0,+inf) 4 ddouble.CarlsonRF(x, y, z)
carlson_rj [0,+inf) 4 ddouble.CarlsonRJ(x, y, z, w)
carlson_rg [0,+inf) 4 ddouble.CarlsonRG(x, y, z)
riemann_zeta (-inf,+inf) 3 ddouble.RiemannZeta(x)
hurwitz_zeta (1,+inf) 3 a ≥ 0 ddouble.HurwitzZeta(x, a)
dirichlet_eta (-inf,+inf) 3 ddouble.DirichletEta(x)
polylog (-inf,1] 3 n ∈ [-4,8] ddouble.Polylog(n, x)
owen's_t (-inf,+inf) 5 ddouble.OwenT(h, a)
bump (-inf,+inf) 4 C-infinity smoothness basis function, bump(x)=1/(exp(1/x-1/(1-x))+1) ddouble.Bump(x)
hermite_h (-inf,+inf) 3 n ≤ 64 ddouble.HermiteH(n, x)
laguerre_l (-inf,+inf) 3 n ≤ 64 ddouble.LaguerreL(n, x)
associated_laguerre_l (-inf,+inf) 3 n ≤ 64 ddouble.LaguerreL(n, alpha, x)
legendre_p (-inf,+inf) 3 n ≤ 64 ddouble.LegendreP(n, x)
associated_legendre_p [-1,1] 3 n ≤ 64 ddouble.LegendreP(n, m, x)
chebyshev_t (-inf,+inf) 3 n ≤ 64 ddouble.ChebyshevT(n, x)
chebyshev_u (-inf,+inf) 3 n ≤ 64 ddouble.ChebyshevU(n, x)
zernike_r [0,1] 3 n ≤ 64 ddouble.ZernikeR(n, m, x)
gegenbauer_c (-inf,+inf) 3 n ≤ 64 ddouble.GegenbauerC(n, alpha, x)
jacobi_p [-1,1] 3 n ≤ 64, alpha,beta > -1 ddouble.JacobiP(n, alpha, beta, x)
bernoulli [0,1] 4 n ≤ 64, centered: x->x-1/2 ddouble.Bernoulli(n, x, centered)
mathieu_eigenvalue_a (-inf,+inf) 4 n ≤ 16 ddouble.MathieuA(n, q)
mathieu_eigenvalue_b (-inf,+inf) 4 n ≤ 16 ddouble.MathieuB(n, q)
mathieu_ce (-inf,+inf) 4 n ≤ 16, Accuracy deteriorates when q is very large. ddouble.MathieuC(n, q, x)
mathieu_se (-inf,+inf) 4 n ≤ 16, Accuracy deteriorates when q is very large. ddouble.MathieuS(n, q, x)
ldexp (-inf,+inf) N/A ddouble.Ldexp(x, y)
binomial N/A 1 n ≤ 1000 ddouble.Binomial(n, k)
min N/A N/A ddouble.Min(x, y)
max N/A N/A ddouble.Max(x, y)
floor N/A N/A ddouble.Floor(x)
ceiling N/A N/A ddouble.Ceiling(x)
round N/A N/A ddouble.Round(x)
truncate N/A N/A ddouble.Truncate(x)
array sum N/A N/A IEnumerable<ddouble>.Sum()
array average N/A N/A IEnumerable<ddouble>.Average()
array min N/A N/A IEnumerable<ddouble>.Min()
array max N/A N/A IEnumerable<ddouble>.Max()

Constants

constant value note usage
Pi 3.141592653589793238462... ddouble.PI
Napier's E 2.718281828459045235360... ddouble.E
Euler's Gamma 0.577215664901532860606... ddouble.EulerGamma
ζ(3) 1.202056903159594285399... Apery const. ddouble.Zeta3
ζ(5) 1.036927755143369926331... ddouble.Zeta5
ζ(7) 1.008349277381922826839... ddouble.Zeta7
ζ(9) 1.002008392826082214418... ddouble.Zeta9
Positive root of digamma 1.461632144968362341263... ddouble.DigammaZero
Erdös Borwein constant 1.606695152415291763783... ddouble.ErdosBorwein
Feigenbaum constant 4.669201609102990671853... ddouble.FeigenbaumDelta
Lemniscate constant 2.622057554292119810465... ddouble.LemniscatePI

Sequence

sequence note usage
Taylor 1/n! ddouble.TaylorSequence
Factorial n! ddouble.Factorial
Bernoulli B(2k) ddouble.BernoulliSequence
HarmonicNumber H_n ddouble.HarmonicNumber
StieltjesGamma γ_n ddouble.StieltjesGamma

Casts

  • long (accurately)
ddouble v0 = 123;
long n0 = (long)v0;
  • double (accurately)
ddouble v1 = 0.5;
double n1 = (double)v1;
  • decimal (approximately)
ddouble v1 = 0.1m;
decimal n1 = (decimal)v1;
  • string (approximately)
ddouble v2 = "3.14e0";
string s0 = v2.ToString();
string s1 = v2.ToString("E8");
string s2 = $"{v2:E8}";

I/O

BinaryWriter, BinaryReader

Licence

MIT

Author

T.Yoshimura

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
  • net6.0

    • No dependencies.

NuGet packages (12)

Showing the top 5 NuGet packages that depend on TYoshimura.DoubleDouble:

Package Downloads
TYoshimura.Algebra

Linear Algebra

TYoshimura.DoubleDouble.Complex

Double-Double Complex and Quaternion Implements

TYoshimura.CurveFitting

Curvefitting - linear, polynomial, pade, arbitrary function

TYoshimura.DoubleDouble.Statistic

Double-Double Statistic Implements

TYoshimura.DoubleDouble.Integrate

Double-Double Numerical Integration Implements

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
4.2.6 197 11/22/2024
4.2.5 135 11/22/2024
4.2.4 120 11/21/2024
4.2.3 142 11/18/2024
4.2.2 160 11/17/2024
4.2.1 295 11/14/2024
4.2.0 135 11/13/2024
4.1.0 161 11/13/2024
4.0.3 127 11/8/2024
4.0.2 611 11/7/2024
4.0.1 177 11/1/2024
4.0.0 202 10/31/2024
3.3.4 124 10/23/2024
3.3.3 104 10/21/2024
3.3.2 198 10/14/2024
3.3.1 114 10/13/2024
3.3.0 127 10/13/2024
3.2.9 126 10/11/2024
3.2.8 138 9/18/2024
3.2.7 157 9/10/2024
3.2.6 337 8/22/2024
3.2.5 164 8/22/2024
3.2.4 188 7/12/2024
3.2.3 143 6/9/2024
3.2.2 400 4/26/2024
3.2.1 406 2/22/2024
3.2.0 809 1/20/2024
3.1.6 504 11/12/2023
3.1.5 454 11/3/2023
3.1.4 491 11/3/2023
3.1.3 466 10/30/2023
3.1.2 479 10/28/2023
3.1.1 438 10/28/2023
3.1.0 513 10/21/2023
3.0.9 456 10/20/2023
3.0.8 495 10/19/2023
3.0.7 496 10/14/2023
3.0.6 508 10/13/2023
3.0.5 496 10/12/2023
3.0.4 485 10/11/2023
3.0.3 548 10/8/2023
3.0.2 521 10/7/2023
3.0.1 468 9/30/2023
3.0.0 514 9/30/2023
2.9.8 523 9/29/2023
2.9.7 522 9/16/2023
2.9.6 592 9/9/2023
2.9.5 583 9/9/2023
2.9.4 594 9/8/2023
2.9.3 560 9/8/2023
2.9.2 494 9/6/2023
2.9.1 525 9/5/2023
2.9.0 774 9/4/2023
2.8.6 858 3/18/2023
2.8.5 1,238 3/13/2023
2.8.4 750 3/11/2023
2.8.3 705 2/23/2023
2.8.2 705 2/17/2023
2.8.1 786 2/16/2023
2.8.0 705 2/13/2023
2.7.2 1,823 10/30/2022
2.7.1 827 10/28/2022
2.7.0 855 10/25/2022
2.6.1 850 10/14/2022
2.6.0 891 10/13/2022
2.5.6 891 9/18/2022
2.5.5 900 9/17/2022
2.5.4 842 9/16/2022
2.5.3 857 9/15/2022
2.5.2 841 9/7/2022
2.5.1 898 9/5/2022
2.5.0 2,147 9/4/2022
2.4.5 793 9/3/2022
2.4.4 828 9/2/2022
2.4.3 846 8/31/2022
2.4.2 936 2/8/2022
2.4.1 1,399 1/26/2022
2.4.0 881 1/25/2022
2.3.1 1,028 1/21/2022
2.3.0 996 1/20/2022
2.2.0 893 1/13/2022
2.1.2 939 1/12/2022
2.1.1 913 1/12/2022
2.1.0 702 1/11/2022
2.0.5 840 1/9/2022
2.0.4 769 1/8/2022
2.0.2 727 1/8/2022
2.0.1 746 1/7/2022
2.0.0 756 1/7/2022
1.9.4 746 1/6/2022
1.9.3 723 1/6/2022
1.9.2 788 1/5/2022
1.9.0 724 1/5/2022
1.8.0 719 1/4/2022
1.7.0 728 1/3/2022
1.6.1 734 12/25/2021
1.6.0 1,269 12/25/2021
1.5.2 697 12/22/2021
1.5.1 776 12/22/2021
1.5.0 757 12/22/2021
1.4.3 894 12/11/2021
1.4.2 861 12/11/2021
1.4.1 764 12/2/2021
1.4.0 1,246 12/1/2021

+ mathieu