TYoshimura.DoubleDouble 2.8.3

There is a newer version of this package available.
See the version list below for details.
dotnet add package TYoshimura.DoubleDouble --version 2.8.3
                    
NuGet\Install-Package TYoshimura.DoubleDouble -Version 2.8.3
                    
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="TYoshimura.DoubleDouble" Version="2.8.3" />
                    
For projects that support PackageReference, copy this XML node into the project file to reference the package.
<PackageVersion Include="TYoshimura.DoubleDouble" Version="2.8.3" />
                    
Directory.Packages.props
<PackageReference Include="TYoshimura.DoubleDouble" />
                    
Project file
For projects that support Central Package Management (CPM), copy this XML node into the solution Directory.Packages.props file to version the package.
paket add TYoshimura.DoubleDouble --version 2.8.3
                    
#r "nuget: TYoshimura.DoubleDouble, 2.8.3"
                    
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
#:package TYoshimura.DoubleDouble@2.8.3
                    
#:package directive can be used in C# file-based apps starting in .NET 10 preview 4. Copy this into a .cs file before any lines of code to reference the package.
#addin nuget:?package=TYoshimura.DoubleDouble&version=2.8.3
                    
Install as a Cake Addin
#tool nuget:?package=TYoshimura.DoubleDouble&version=2.8.3
                    
Install as a Cake Tool

DoubleDouble

Double-Double Arithmetic and Special Function Implements

Requirement

.NET 6.0

Install

Download DLL
Download Nuget

More Precision ?

MultiPrecision

Type

type mantissa bits significant digits
ddouble 104 30

Epsilon: 2^-968 = 4.00833e-292
MaxValue : 2^1024 = 1.79769e308

Functions

function domain mantissa error bits note usage
sqrt [0,+inf) 2 ddouble.Sqrt(x)
cbrt (-inf,+inf) 2 ddouble.Cbrt(x)
log2 (0,+inf) 2 ddouble.Log2(x)
log (0,+inf) 3 ddouble.Log(x)
log10 (0,+inf) 3 ddouble.Log10(x)
log1p (-1,+inf) 3 log(1+x) ddouble.Log1p(x)
pow2 (-inf,+inf) 1 ddouble.Pow2(x)
pow (-inf,+inf) 2 ddouble.Pow(x, y)
pow10 (-inf,+inf) 2 ddouble.Pow10(x)
exp (-inf,+inf) 2 ddouble.Exp(x)
expm1 (-inf,+inf) 2 exp(x)-1 ddouble.Expm1(x)
sin (-inf,+inf) 2 ddouble.Sin(x)
cos (-inf,+inf) 2 ddouble.Cos(x)
tan (-inf,+inf) 3 ddouble.Tan(x)
sinpi (-inf,+inf) 1 sin(πx) ddouble.SinPI(x)
cospi (-inf,+inf) 1 cos(πx) ddouble.CosPI(x)
tanpi (-inf,+inf) 2 tan(πx) ddouble.TanPI(x)
sinh (-inf,+inf) 2 ddouble.Sinh(x)
cosh (-inf,+inf) 2 ddouble.Cosh(x)
tanh (-inf,+inf) 2 ddouble.Tanh(x)
asin [-1,1] 2 Accuracy deteriorates near x=-1,1. ddouble.Asin(x)
acos [-1,1] 2 Accuracy deteriorates near x=-1,1. ddouble.Acos(x)
atan (-inf,+inf) 2 ddouble.Atan(x)
atan2 (-inf,+inf) 2 ddouble.Atan2(y, x)
arsinh (-inf,+inf) 2 ddouble.Arsinh(x)
arcosh [1,+inf) 2 ddouble.Arcosh(x)
artanh (-1,1) 4 Accuracy deteriorates near x=-1,1. ddouble.Artanh(x)
sinc (-inf,+inf) 2 ddouble.Sinc(x, normalized)
sinhc (-inf,+inf) 3 ddouble.Sinhc(x)
gamma (-inf,+inf) 2 Accuracy deteriorates near non-positive intergers. If x is Natual number lass than 35, an exact integer value is returned. ddouble.Gamma(x)
loggamma (0,+inf) 4 ddouble.LogGamma(x)
digamma (-inf,+inf) 4 Near the positive zero point, polynomial interpolation is used. ddouble.Digamma(x)
polygamma (-inf,+inf) 4 Accuracy deteriorates near non-positive intergers. n ≤ 16 ddouble.Polygamma(n, x)
inverse_gamma [1,+inf) 4 gamma^-1(x) ddouble.InverseGamma(x)
lower_incomplete_gamma [0,+inf) 4 nu ≤ 128 ddouble.LowerIncompleteGamma(nu, x)
upper_incomplete_gamma [0,+inf) 4 nu ≤ 128 ddouble.UpperIncompleteGamma(nu, x)
beta [0,+inf) 4 ddouble.Beta(a, b)
incomplete_beta [0,1] 4 Accuracy decreases when the radio of a,b is too large. a,b ≤ 64 ddouble.IncompleteBeta(x, a, b)
erf (-inf,+inf) 3 ddouble.Erf(x)
erfc (-inf,+inf) 3 ddouble.Erfc(x)
inverse_erf (-1,1) 3 ddouble.InverseErf(x)
inverse_erfc (0,2) 3 ddouble.InverseErfc(x)
erfi (-inf,+inf) 4 ddouble.Erfi(x)
dawson_f (-inf,+inf) 4 ddouble.DawsonF(x)
bessel_j [0,+inf) 4 Accuracy deteriorates near zero points. abs(nu) ≤ 8 ddouble.BesselJ(nu, x)
bessel_y [0,+inf) 4 Accuracy deteriorates near zero points. abs(nu) ≤ 8 ddouble.BesselY(nu, x)
bessel_i [0,+inf) 4 abs(nu) ≤ 8 ddouble.BesselI(nu, x)
bessel_k [0,+inf) 4 abs(nu) ≤ 8 ddouble.BesselK(nu, x)
struve_h (-inf,+inf) 4 0 ≤ n ≤ 8 ddouble.StruveH(n, x)
struve_k [0,+inf) 4 0 ≤ n ≤ 8 ddouble.StruveK(n, x)
struve_l (-inf,+inf) 4 0 ≤ n ≤ 8 ddouble.StruveL(n, x)
struve_m [0,+inf) 4 0 ≤ n ≤ 8 ddouble.StruveM(n, x)
elliptic_k [0,1] 4 k: elliptic modulus, m=k^2 ddouble.EllipticK(m)
elliptic_e [0,1] 4 k: elliptic modulus, m=k^2 ddouble.EllipticE(m)
elliptic_pi [0,1] 4 k: elliptic modulus, m=k^2 ddouble.EllipticPi(n, m)
incomplete_elliptic_k [0,2pi] 4 k: elliptic modulus, m=k^2 ddouble.EllipticK(x, m)
incomplete_elliptic_e [0,2pi] 4 k: elliptic modulus, m=k^2 ddouble.EllipticE(x, m)
incomplete_elliptic_pi [0,2pi] 4 k: elliptic modulus, m=k^2 Argument order follows wolfram. ddouble.EllipticPi(n, x, m)
elliptic_theta (-inf,+inf) 4 a=1...4, q ≤ 0.995 ddouble.EllipticTheta(a, x, q)
kepler_e (-inf,+inf) 6 inverse kepler's equation, e(eccentricity) ≤ 128 ddouble.KeplerE(m, e, centered)
agm [0,+inf) 2 ddouble.Agm(a, b)
fresnel_c (-inf,+inf) 4 ddouble.FresnelC(x)
fresnel_s (-inf,+inf) 4 ddouble.FresnelS(x)
ei (-inf,+inf) 4 exponential integral ddouble.Ei(x)
ein (-inf,+inf) 4 complementary exponential integral ddouble.Ein(x)
li [0,+inf) 5 logarithmic integral li(x)=ei(log(x)) ddouble.Li(x)
si (-inf,+inf) 4 sin integral, limit_zero=true: si(x) ddouble.Si(x, limit_zero)
ci [0,+inf) 4 cos integral ddouble.Ci(x)
shi (-inf,+inf) 5 hyperbolic sin integral ddouble.Shi(x)
chi [0,+inf) 5 hyperbolic cos integral ddouble.Chi(x)
lambert_w [-1/e,+inf) 4 ddouble.LambertW(x)
airy_ai (-inf,+inf) 5 Accuracy deteriorates near zero points. ddouble.AiryAi(x)
airy_bi (-inf,+inf) 5 Accuracy deteriorates near zero points. ddouble.AiryBi(x)
jacobi_sn (-inf,+inf) 4 k: elliptic modulus, m=k^2 ddouble.JacobiSn(x, m)
jacobi_cn (-inf,+inf) 4 k: elliptic modulus, m=k^2 ddouble.JacobiCn(x, m)
jacobi_dn (-inf,+inf) 4 k: elliptic modulus, m=k^2 ddouble.JacobiDn(x, m)
jacobi_amplitude (-inf,+inf) 4 k: elliptic modulus, m=k^2 ddouble.JacobiAm(x, m)
inverse_jacobi_sn [-1,+1] 4 k: elliptic modulus, m=k^2 ddouble.JacobiArcSn(x, m)
inverse_jacobi_cn [-1,+1] 4 k: elliptic modulus, m=k^2 ddouble.JacobiArcCn(x, m)
inverse_jacobi_dn [0,1] 4 k: elliptic modulus, m=k^2 ddouble.JacobiArcDn(x, m)
carlson_rd [0,+inf) 4 ddouble.CarlsonRD(x, y, z)
carlson_rc [0,+inf) 4 ddouble.CarlsonRC(x, y)
carlson_rf [0,+inf) 4 ddouble.CarlsonRF(x, y, z)
carlson_rj [0,+inf) 4 ddouble.CarlsonRJ(x, y, z, w)
carlson_rg [0,+inf) 4 ddouble.CarlsonRG(x, y, z)
riemann_zeta (-inf,+inf) 3 ddouble.RiemannZeta(x)
hurwitz_zeta (1,+inf) 3 a ≥ 0 ddouble.HurwitzZeta(x, a)
dirichlet_eta (-inf,+inf) 3 ddouble.DirichletEta(x)
polylog (-inf,1] 3 n ∈ [-4,8] ddouble.Polylog(n, x)
owen's_t (-inf,+inf) 5 ddouble.OwenT(h, a)
bump (-inf,+inf) 4 C-infinity smoothness basis function, bump(x)=1/(exp(1/x-1/(1-x))+1) ddouble.Bump(x)
hermite_h (-inf,+inf) 3 n ≤ 64 ddouble.HermiteH(n, x)
laguerre_l (-inf,+inf) 3 n ≤ 64 ddouble.LaguerreL(n, x)
associated_laguerre_l (-inf,+inf) 3 n ≤ 64 ddouble.LaguerreL(n, alpha, x)
legendre_p (-inf,+inf) 3 n ≤ 64 ddouble.LegendreP(n, x)
associated_legendre_p [-1,1] 3 n ≤ 64 ddouble.LegendreP(n, m, x)
chebyshev_t (-inf,+inf) 3 n ≤ 64 ddouble.ChebyshevT(n, x)
chebyshev_u (-inf,+inf) 3 n ≤ 64 ddouble.ChebyshevU(n, x)
zernike_r [0,1] 3 n ≤ 64 ddouble.ZernikeR(n, m, x)
gegenbauer_c (-inf,+inf) 3 n ≤ 64 ddouble.GegenbauerC(n, alpha, x)
jacobi_p [-1,1] 3 n ≤ 64, alpha,beta > -1 ddouble.JacobiP(n, alpha, beta, x)
bernoulli [0,1] 4 n ≤ 64, centered: x->x-1/2 ddouble.Bernoulli(n, x, centered)
mathieu_eigenvalue_a (-inf,+inf) 4 n ≤ 16 ddouble.MathieuA(n, q)
mathieu_eigenvalue_b (-inf,+inf) 4 n ≤ 16 ddouble.MathieuB(n, q)
mathieu_ce (-inf,+inf) 4 n ≤ 16, Accuracy deteriorates when q is very large. ddouble.MathieuC(n, q, x)
mathieu_se (-inf,+inf) 4 n ≤ 16, Accuracy deteriorates when q is very large. ddouble.MathieuS(n, q, x)
ldexp (-inf,+inf) N/A ddouble.Ldexp(x, y)
binomial N/A 1 n ≤ 1000 ddouble.Binomial(n, k)
min N/A N/A ddouble.Min(x, y)
max N/A N/A ddouble.Max(x, y)
floor N/A N/A ddouble.Floor(x)
ceiling N/A N/A ddouble.Ceiling(x)
round N/A N/A ddouble.Round(x)
truncate N/A N/A ddouble.Truncate(x)
array sum N/A N/A IEnumerable<ddouble>.Sum()
array average N/A N/A IEnumerable<ddouble>.Average()
array min N/A N/A IEnumerable<ddouble>.Min()
array max N/A N/A IEnumerable<ddouble>.Max()

Constants

constant value note usage
Pi 3.141592653589793238462... ddouble.PI
Napier's E 2.718281828459045235360... ddouble.E
Euler's Gamma 0.577215664901532860606... ddouble.EulerGamma
ζ(3) 1.202056903159594285399... Apery const. ddouble.Zeta3
ζ(5) 1.036927755143369926331... ddouble.Zeta5
ζ(7) 1.008349277381922826839... ddouble.Zeta7
ζ(9) 1.002008392826082214418... ddouble.Zeta9
Positive root of digamma 1.461632144968362341263... ddouble.DigammaZero
Erdös Borwein constant 1.606695152415291763783... ddouble.ErdosBorwein
Feigenbaum constant 4.669201609102990671853... ddouble.FeigenbaumDelta
Lemniscate constant 2.622057554292119810465... ddouble.LemniscatePI

Sequence

sequence note usage
Taylor 1/n! ddouble.TaylorSequence
Factorial n! ddouble.Factorial
Bernoulli B(2k) ddouble.BernoulliSequence
HarmonicNumber H_n ddouble.HarmonicNumber
StieltjesGamma γ_n ddouble.StieltjesGamma

Casts

  • long (accurately)
ddouble v0 = 123;
long n0 = (long)v0;
  • double (accurately)
ddouble v1 = 0.5;
double n1 = (double)v1;
  • decimal (approximately)
ddouble v1 = 0.1m;
decimal n1 = (decimal)v1;
  • string (approximately)
ddouble v2 = "3.14e0";
string s0 = v2.ToString();
string s1 = v2.ToString("E8");
string s2 = $"{v2:E8}";

I/O

BinaryWriter, BinaryReader

Licence

MIT

Author

T.Yoshimura

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed.  net10.0 was computed.  net10.0-android was computed.  net10.0-browser was computed.  net10.0-ios was computed.  net10.0-maccatalyst was computed.  net10.0-macos was computed.  net10.0-tvos was computed.  net10.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.
  • net6.0

    • No dependencies.

NuGet packages (12)

Showing the top 5 NuGet packages that depend on TYoshimura.DoubleDouble:

Package Downloads
TYoshimura.Algebra

Linear Algebra

TYoshimura.DoubleDouble.Complex

Double-Double Complex and Quaternion Implements

TYoshimura.CurveFitting

Curvefitting - linear, polynomial, pade, arbitrary function

TYoshimura.DoubleDouble.Statistic

Double-Double Statistic Implements

TYoshimura.DoubleDouble.Integrate

Double-Double Numerical Integration Implements

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last Updated
4.2.6 249 11/22/2024
4.2.5 177 11/22/2024
4.2.4 159 11/21/2024
4.2.3 179 11/18/2024
4.2.2 206 11/17/2024
4.2.1 335 11/14/2024
4.2.0 176 11/13/2024
4.1.0 196 11/13/2024
4.0.3 162 11/8/2024
4.0.2 650 11/7/2024
4.0.1 215 11/1/2024
4.0.0 239 10/31/2024
3.3.4 165 10/23/2024
3.3.3 144 10/21/2024
3.3.2 238 10/14/2024
3.3.1 145 10/13/2024
3.3.0 158 10/13/2024
3.2.9 165 10/11/2024
3.2.8 177 9/18/2024
3.2.7 198 9/10/2024
3.2.6 374 8/22/2024
3.2.5 196 8/22/2024
3.2.4 230 7/12/2024
3.2.3 185 6/9/2024
3.2.2 441 4/26/2024
3.2.1 441 2/22/2024
3.2.0 849 1/20/2024
3.1.6 524 11/12/2023
3.1.5 472 11/3/2023
3.1.4 510 11/3/2023
3.1.3 477 10/30/2023
3.1.2 493 10/28/2023
3.1.1 453 10/28/2023
3.1.0 533 10/21/2023
3.0.9 474 10/20/2023
3.0.8 506 10/19/2023
3.0.7 517 10/14/2023
3.0.6 526 10/13/2023
3.0.5 512 10/12/2023
3.0.4 503 10/11/2023
3.0.3 568 10/8/2023
3.0.2 541 10/7/2023
3.0.1 486 9/30/2023
3.0.0 526 9/30/2023
2.9.8 536 9/29/2023
2.9.7 542 9/16/2023
2.9.6 617 9/9/2023
2.9.5 607 9/9/2023
2.9.4 625 9/8/2023
2.9.3 580 9/8/2023
2.9.2 521 9/6/2023
2.9.1 551 9/5/2023
2.9.0 802 9/4/2023
2.8.6 888 3/18/2023
2.8.5 1,270 3/13/2023
2.8.4 783 3/11/2023
2.8.3 738 2/23/2023
2.8.2 742 2/17/2023
2.8.1 816 2/16/2023
2.8.0 729 2/13/2023
2.7.2 1,858 10/30/2022
2.7.1 865 10/28/2022
2.7.0 888 10/25/2022
2.6.1 883 10/14/2022
2.6.0 921 10/13/2022
2.5.6 929 9/18/2022
2.5.5 931 9/17/2022
2.5.4 883 9/16/2022
2.5.3 891 9/15/2022
2.5.2 879 9/7/2022
2.5.1 935 9/5/2022
2.5.0 2,187 9/4/2022
2.4.5 828 9/3/2022
2.4.4 863 9/2/2022
2.4.3 885 8/31/2022
2.4.2 974 2/8/2022
2.4.1 1,438 1/26/2022
2.4.0 913 1/25/2022
2.3.1 1,068 1/21/2022
2.3.0 1,040 1/20/2022
2.2.0 933 1/13/2022
2.1.2 978 1/12/2022
2.1.1 953 1/12/2022
2.1.0 742 1/11/2022
2.0.5 875 1/9/2022
2.0.4 806 1/8/2022
2.0.2 767 1/8/2022
2.0.1 787 1/7/2022
2.0.0 795 1/7/2022
1.9.4 781 1/6/2022
1.9.3 756 1/6/2022
1.9.2 826 1/5/2022
1.9.0 764 1/5/2022
1.8.0 758 1/4/2022
1.7.0 763 1/3/2022
1.6.1 774 12/25/2021
1.6.0 1,309 12/25/2021
1.5.2 737 12/22/2021
1.5.1 816 12/22/2021
1.5.0 799 12/22/2021
1.4.3 932 12/11/2021
1.4.2 904 12/11/2021
1.4.1 801 12/2/2021
1.4.0 1,284 12/1/2021

+ mathieu