SharpProp 2.0.4

There is a newer version of this package available.
See the version list below for details.
dotnet add package SharpProp --version 2.0.4                
NuGet\Install-Package SharpProp -Version 2.0.4                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="SharpProp" Version="2.0.4" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add SharpProp --version 2.0.4                
#r "nuget: SharpProp, 2.0.4"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install SharpProp as a Cake Addin
#addin nuget:?package=SharpProp&version=2.0.4

// Install SharpProp as a Cake Tool
#tool nuget:?package=SharpProp&version=2.0.4                

SharpProp

Build & Tests NuGet Platform License codecov

A simple, full-featured, lightweight, cross-platform CoolProp wrapper for C#

Quick start

All calculations of thermophysical properties are performed in SI units.

The Fluid class is responsible for pure fluids and binary mixtures, the Mixture class - for mixtures with pure fluids components, the HumidAir class - for humid air.

The FluidsList is an enum of all available fluids.

List of properties

For the Fluid and Mixture instances:

  • Compressibility - compressibility factor (-)
  • Conductivity - thermal conductivity (W/m/K)
  • CriticalPressure - absolute pressure at the critical point (Pa)
  • CriticalTemperature - absolute temperature at the critical point (K)
  • Density - mass density (kg/m3)
  • DynamicViscosity - dynamic viscosity (Pa*s)
  • Enthalpy - mass specific enthalpy (J/kg)
  • Entropy - mass specific entropy (J/kg/K)
  • FreezingTemperature - temperature at freezing point (for incompressible fluids) (K)
  • InternalEnergy - mass specific internal energy (J/kg)
  • MaxPressure - maximum pressure limit (Pa)
  • MaxTemperature - maximum temperature limit (K)
  • MinPressure - minimum pressure limit (Pa)
  • MinTemperature - minimum temperature limit (K)
  • MolarMass - molar mass (kg/mol)
  • Phase - phase
  • Prandtl - Prandtl number (-)
  • Pressure - absolute pressure (Pa)
  • Quality - mass vapor quality (-)
  • SoundSpeed - sound speed (m/s)
  • SpecificHeat - mass specific constant pressure specific heat (J/kg/K)
  • SurfaceTension - surface tension (N/m)
  • Temperature - absolute temperature (K)
  • TriplePressure - absolute pressure at the triple point (Pa)
  • TripleTemperature - absolute temperature at the triple point (K)

For the HumidAir instances:

  • Compressibility - compressibility factor (-)
  • Conductivity - thermal conductivity (W/m/K)
  • Density - mass density per humid air unit (kg/m3)
  • DewTemperature - dew-point absolute temperature (K)
  • DynamicViscosity - dynamic viscosity (Pa*s)
  • Enthalpy - mass specific enthalpy per humid air (J/kg)
  • Entropy - mass specific entropy per humid air (J/kg/K)
  • Humidity - absolute humidity ratio (kg/kg d.a.)
  • PartialPressure - partial pressure of water vapor (Pa)
  • Pressure - absolute pressure (Pa)
  • RelativeHumidity - relative humidity ratio (from 0 to 1) (-)
  • SpecificHeat - mass specific constant pressure specific heat per humid air (J/kg/K)
  • Temperature - absolute dry-bulb temperature (K)
  • WetBulbTemperature - absolute wet-bulb temperature (K)

NB. If the required property is not present in the instance of the fluid, then you can add it by extending the Fluid, Mixture or HumidAir classes.

Examples

Don't forget to add using SharpProp; at the top of the code.

Pure fluids

To calculate the specific heat of saturated water vapour at 101325 Pa:

var waterVapour = new Fluid(FluidsList.Water);
waterVapour.Update(Input.Pressure(101325), Input.Quality(1));
Console.WriteLine(waterVapour.SpecificHeat); // 2079.937085633241
Incompressible binary mixtures

To calculate the dynamic viscosity of propylene glycol aqueous solution with 60 % mass fraction at 101325 Pa and 253.15 K:

var propyleneGlycol = new Fluid(FluidsList.MPG, 0.6);
propyleneGlycol.Update(Input.Pressure(101325), Input.Temperature(253.15));
Console.WriteLine(propyleneGlycol.DynamicViscosity); // 0.13907391053938847
Mixtures

To calculate the density of ethanol aqueous solution (with ethanol 40 % mass fraction) at 200 kPa and 277.15 K:

var mixture = new Mixture(new List<FluidsList> {FluidsList.Water, FluidsList.Ethanol}, 
    new List<double> {0.6, 0.4});
mixture.Update(Input.Pressure(200e3), Input.Temperature(277.15));
Console.WriteLine(mixture.Density); // 883.3922771627759
Humid air

To calculate the wet bulb temperature of humid air at 99 kPa, 303.15 K and 50 % relative humidity:

var humidAir = new HumidAir();
humidAir.Update(InputHumidAir.Pressure(99e3), InputHumidAir.Temperature(303.15),
    InputHumidAir.RelativeHumidity(0.5));
// or use:
// var humidAir = HumidAir.WithState(InputHumidAir.Pressure(99e3), InputHumidAir.Temperature(303.15),
//     InputHumidAir.RelativeHumidity(0.5));
Console.WriteLine(humidAir.WetBulbTemperature); // 295.0965785590792
Converting to JSON string

For example, converting the Fluid instance to indented JSON string:

var refrigerant = new Fluid(FluidsList.R32);
refrigerant.Update(Input.Temperature(278.15), Input.Quality(1));
Console.WriteLine(refrigerant.AsJson(indented: true));

As a result:

{
  "Name": "R32",
  "Fraction": 1.0,
  "Compressibility": 0.8266625877210833,
  "Conductivity": 0.013435453854396475,
  "CriticalPressure": 5782000.0,
  "CriticalTemperature": 351.255,
  "Density": 25.89088151061046,
  "DynamicViscosity": 1.2606543144761657E-05,
  "Enthalpy": 516105.7800378023,
  "Entropy": 2136.2654412978777,
  "FreezingTemperature": null,
  "InternalEnergy": 479357.39743435377,
  "MaxPressure": 70000000.0,
  "MaxTemperature": 435.0,
  "MinPressure": 47.999893876059375,
  "MinTemperature": 136.34,
  "MolarMass": 0.052024,
  "Phase": "TwoPhase",
  "Prandtl": 1.2252282243443504,
  "Pressure": 951448.019691762,
  "Quality": 1.0,
  "SoundSpeed": 209.6337575990297,
  "SpecificHeat": 1305.7899441785378,
  "SurfaceTension": 0.010110117241546162,
  "Temperature": 278.15,
  "TriplePressure": 47.999893876059375,
  "TripleTemperature": 136.34
}
Equality of instances

You can simply determine the equality of Fluid, Mixture and HumidAir instances by its state. Just use the Equals method or the equality operators (== or !=). Exactly the same way you can compare inputs (Input, InputHumidAir or any IKeyedInput record).

For example:

var humidAir = HumidAir.WithState(InputHumidAir.Pressure(101325),
    InputHumidAir.Temperature(293.15), InputHumidAir.RelativeHumidity(0.5));
var humidAirWithSameState = HumidAir.WithState(InputHumidAir.Pressure(101325),
    InputHumidAir.Temperature(293.15), InputHumidAir.RelativeHumidity(0.5));
Console.WriteLine(humidAir == humidAirWithSameState); // true
Console.WriteLine(InputHumidAir.Pressure(101325) == InputHumidAir.Pressure(101.325e3)); // true
Adding other properties
Adding other inputs
Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages (1)

Showing the top 1 NuGet packages that depend on SharpProp:

Package Downloads
VCRC

Cross-platform vapor-compression refrigeration cycles analysis tool

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
7.3.0 407 10/3/2024
7.2.11 830 8/29/2024
7.2.10 784 7/2/2024
7.2.9 418 6/11/2024
7.2.8 875 3/19/2024
7.2.7 589 2/21/2024
7.2.6 310 1/19/2024
7.2.4 203 1/16/2024
7.2.3 305 12/27/2023
7.2.2 234 12/20/2023
7.2.1 303 12/10/2023
7.2.0 275 11/30/2023
7.1.0 315 11/15/2023
7.0.6 190 11/10/2023
7.0.5 363 10/11/2023
7.0.4 356 9/26/2023
7.0.3 351 9/6/2023
7.0.2 347 8/31/2023
7.0.1 226 8/30/2023
7.0.0 394 8/4/2023
6.0.4 1,151 3/18/2023
6.0.3 367 3/10/2023
6.0.2 408 3/5/2023
6.0.1 437 2/26/2023
6.0.0 492 2/18/2023
5.0.0 1,055 12/4/2022
4.4.1 5,302 11/21/2022
4.4.0 473 11/15/2022
4.3.3 636 11/7/2022
4.3.2 533 11/2/2022
4.3.1 690 9/12/2022
4.2.5 615 9/5/2022
4.2.4 646 8/17/2022
4.2.3 642 8/5/2022
4.2.2 634 7/22/2022
4.2.1 668 7/4/2022
4.2.0 667 6/29/2022
4.1.0 459 6/27/2022
4.0.3 871 6/22/2022
4.0.2 644 6/14/2022
4.0.1 663 6/7/2022
4.0.0 557 5/27/2022
3.2.4 579 5/7/2022
3.2.3 726 4/24/2022
3.2.2 864 4/6/2022
3.2.1 711 4/4/2022
3.2.0 735 3/22/2022
3.1.19 680 3/11/2022
3.1.18 685 3/4/2022
3.1.17 652 3/1/2022
3.1.16 668 2/17/2022
3.1.15 656 2/12/2022
3.1.14 728 1/29/2022
3.1.13 410 1/10/2022
3.1.11 559 12/8/2021
3.1.10 477 12/5/2021
3.1.9 1,535 11/28/2021
3.1.8 426 11/27/2021
3.1.7 3,312 11/25/2021
3.1.6 311 11/23/2021
3.1.4 363 11/16/2021
3.1.3 357 11/13/2021
3.1.2 426 11/6/2021
3.1.1 394 11/5/2021
3.1.0 404 10/29/2021
3.0.4 371 10/26/2021
3.0.3 483 10/24/2021
3.0.2 473 10/23/2021
3.0.1 378 10/22/2021
3.0.0 403 10/21/2021
2.0.4 382 10/18/2021
2.0.3 424 10/17/2021
2.0.2 364 10/15/2021
2.0.1 361 10/5/2021
2.0.0 356 9/27/2021
1.1.0 422 9/18/2021
1.0.6 344 9/18/2021
1.0.5 433 9/15/2021
1.0.4 370 9/15/2021
1.0.3 389 9/15/2021
1.0.2 366 9/15/2021
1.0.1 438 9/12/2021

Added aliases for the FluidsList