SemanticKernelPooling.Connectors.HuggingFace
1.0.1
See the version list below for details.
dotnet add package SemanticKernelPooling.Connectors.HuggingFace --version 1.0.1
NuGet\Install-Package SemanticKernelPooling.Connectors.HuggingFace -Version 1.0.1
<PackageReference Include="SemanticKernelPooling.Connectors.HuggingFace" Version="1.0.1" />
paket add SemanticKernelPooling.Connectors.HuggingFace --version 1.0.1
#r "nuget: SemanticKernelPooling.Connectors.HuggingFace, 1.0.1"
// Install SemanticKernelPooling.Connectors.HuggingFace as a Cake Addin #addin nuget:?package=SemanticKernelPooling.Connectors.HuggingFace&version=1.0.1 // Install SemanticKernelPooling.Connectors.HuggingFace as a Cake Tool #tool nuget:?package=SemanticKernelPooling.Connectors.HuggingFace&version=1.0.1
SemanticKernelPooling
SemanticKernelPooling is a .NET library designed to facilitate seamless integration with multiple AI service providers, such as OpenAI, Azure OpenAI, HuggingFace, Google, Mistral AI, and others. It utilizes a kernel pooling approach to manage resources efficiently and provide robust AI capabilities in your .NET applications.
Features
- Kernel Pooling: Efficiently manage and reuse kernels for different AI service providers.
- Support for Multiple Providers: Integrates with various AI providers like OpenAI, Azure OpenAI, HuggingFace, Google, Mistral AI, and more.
- Extensibility: Easily extendable to support additional AI service providers.
- Customizable Configuration: Allows fine-tuning of kernel behavior and AI service integration settings.
- Logging Support: Integrated with
Microsoft.Extensions.Logging
for detailed logging and diagnostics. - Error Handling and Retry Logic: Implements robust error handling using Polly for retry policies, especially useful for managing API quotas and transient errors.
Getting Started
Prerequisites
- .NET 8.0 or higher
- NuGet packages:
Microsoft.Extensions.DependencyInjection
Microsoft.Extensions.Logging
Microsoft.SemanticKernel
Polly
for advanced retry logic
Installation
To install SemanticKernelPooling, you can use the NuGet package manager:
dotnet add package SemanticKernelPooling
Basic Usage
Configure Services
Start by configuring the services in your
Program.cs
orStartup.cs
file:using Microsoft.Extensions.DependencyInjection; using Microsoft.Extensions.Logging; using SemanticKernelPooling; using SemanticKernelPooling.Connectors.OpenAI; var services = new ServiceCollection(); services.AddLogging(configure => configure.AddConsole()); services.UseSemanticKernelPooling(); // Core service pooling registration services.UseOpenAIKernelPool(); // Register OpenAI kernel pool services.UseAzureOpenAIKernelPool(); // Register Azure OpenAI kernel pool var serviceProvider = services.BuildServiceProvider();
Configure Providers
You need to set up configuration settings for each AI service provider you intend to use. These settings can be defined in a
appsettings.json
or any configuration source supported by .NET:{ "AIServiceProviderConfigurations": [ { "UniqueName": "OpenAI", "ServiceType": "OpenAI", "ApiKey": "YOUR_OPENAI_API_KEY", "ModelId": "YOUR_MODEL_ID" }, { "UniqueName": "AzureOpenAI", "ServiceType": "AzureOpenAI", "DeploymentName": "YOUR_DEPLOYMENT_NAME", "ApiKey": "YOUR_AZURE_API_KEY", "Endpoint": "YOUR_ENDPOINT", "ModelId": "YOUR_MODEL_ID", "ServiceId": "YOUR_SERVICE_ID" } // Add more providers as needed ] }
Retrieve a Kernel and Execute Commands
Once the service providers are configured and registered, you can retrieve a kernel from the pool and execute commands:
var kernelPoolManager = serviceProvider.GetRequiredService<IKernelPoolManager>(); // Example: Getting a kernel for OpenAI using var kernelWrapper = await kernelPoolManager.GetKernelAsync(AIServiceProviderType.OpenAI); // Use the kernel to perform AI operations var response = await kernelWrapper.Kernel.ExecuteAsync("What is Semantic Kernel?"); Console.WriteLine(response); // Return the kernel to the pool after use
Advanced Usage
Using Retry Policies
To handle API rate limits and transient errors, use Polly to define retry policies:
AsyncPolicy httpTimeoutAndRetryPolicy = Policy .Handle<Exception>(ex => ex.IsTransientError()) .WaitAndRetryAsync( retryCount: 6, sleepDurationProvider: retryAttempt => TimeSpan.FromSeconds(Math.Pow(2, retryAttempt)) + TimeSpan.FromMilliseconds(new Random().Next(0, 3000)), onRetry: (exception, timespan, retryCount, context) => { logger.LogError($"Retry {retryCount} after {timespan.TotalSeconds} seconds due to: {exception.Message}"); });
Adding New AI Providers
To add support for a new AI provider, follow these steps:
Create a Configuration Class: Define a new configuration class inheriting from
AIServiceProviderConfiguration
.Implement a Kernel Pool Class: Create a new kernel pool class inheriting from
AIServicePool<T>
.Register the New Provider: Add the registration method in the
ServiceExtension
class to register your new provider with the DI container.
For example, to add a new "CustomAI" provider:
public record CustomAIConfiguration : AIServiceProviderConfiguration { public required string ModelId { get; init; } public required string ApiKey { get; init; } // Additional settings... } class CustomAIKernelPool( CustomAIConfiguration config, ILoggerFactory loggerFactory) : AIServicePool<CustomAIConfiguration>(config) { protected override void RegisterChatCompletionService(IKernelBuilder kernelBuilder, CustomAIConfiguration config, HttpClient? httpClient) { // Register service logic... } protected override ILogger Logger { get; } = loggerFactory.CreateLogger<CustomAIKernelPool>(); } public static class ServiceExtension { public static void UseCustomAIKernelPool(this IServiceProvider serviceProvider) { var registrar = serviceProvider.GetRequiredService<IKernelPoolFactoryRegistrar>(); registrar.RegisterKernelPoolFactory( AIServiceProviderType.CustomAI, (aiServiceProviderConfiguration, loggerFactory) => new CustomAIKernelPool((CustomAIConfiguration)aiServiceProviderConfiguration, loggerFactory)); } }
Supported Providers
- OpenAI: Use
OpenAIConfiguration
andOpenAIKernelPool
to interact with OpenAI services. - Azure OpenAI: Use
AzureOpenAIConfiguration
andAzureOpenAIKernelPool
for Azure OpenAI. - HuggingFace: Use
HuggingFaceConfiguration
andHuggingFaceKernelPool
to integrate with HuggingFace models. - Google AI: Use
GoogleConfiguration
andGoogleKernelPool
for Google AI services. - Mistral AI: Use
MistralAIConfiguration
andMistralAIKernelPool
to leverage Mistral AI services. - Custom Providers: Easily extend to support other providers by following the extensibility guidelines.
Contributing
Contributions are welcome! Please fork the repository, make your changes, and submit a pull request. Ensure your code adheres to the project's coding standards and includes appropriate tests.
License
This project is licensed under the MIT License. See the LICENSE file for more details.
Acknowledgments
- Special thanks to the contributors of Microsoft Semantic Kernel and all integrated AI service providers.
- Inspired by the need for efficient AI resource management in .NET applications.
Product | Versions Compatible and additional computed target framework versions. |
---|---|
.NET | net8.0 is compatible. net8.0-android was computed. net8.0-browser was computed. net8.0-ios was computed. net8.0-maccatalyst was computed. net8.0-macos was computed. net8.0-tvos was computed. net8.0-windows was computed. |
-
net8.0
- Microsoft.SemanticKernel.Connectors.HuggingFace (>= 1.18.1-preview)
- SemanticKernelPooling (>= 1.0.1)
NuGet packages
This package is not used by any NuGet packages.
GitHub repositories
This package is not used by any popular GitHub repositories.