Izumi.SICK 0.1.0-alpha.23

This is a prerelease version of Izumi.SICK.
There is a newer version of this package available.
See the version list below for details.
dotnet add package Izumi.SICK --version 0.1.0-alpha.23                
NuGet\Install-Package Izumi.SICK -Version 0.1.0-alpha.23                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Izumi.SICK" Version="0.1.0-alpha.23" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Izumi.SICK --version 0.1.0-alpha.23                
#r "nuget: Izumi.SICK, 0.1.0-alpha.23"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install Izumi.SICK as a Cake Addin
#addin nuget:?package=Izumi.SICK&version=0.1.0-alpha.23&prerelease

// Install Izumi.SICK as a Cake Tool
#tool nuget:?package=Izumi.SICK&version=0.1.0-alpha.23&prerelease                

Build Latest Release Maven Central Latest version

SICK: Streams of Independent Constant Keys

SICK is an approach to handle JSON-like structures and various libraries implementing it.

SICK allows you to achieve the following:

  1. Store JSON-like data in efficient indexed binary form
  2. Avoid reading and parsing whole JSON files and access the data you need just in time
  3. Store multiple JSON-like structures in one deduplicating storage
  4. Implement ideal streaming parsers for JSON-like data
  5. Efficiently stream updates for JSON-like data

The tradeoff for these benefits is somehow more complicated and less efficient encoder.

The problem

JSON has a Type-2 grammar and requires a pushdown automaton to parse it. So, it's not possible to implement efficient streaming parser for JSON. Just imagine a huge hierarchy of nested JSON objects: you won't be able to finish parsing the top-level object until the whole file.

JSON is frequently used to store and transfer large amounts of data and these transfers tend to grow over time. Just imagine a typical JSON config file for a large enterprise product.

The non-streaming nature of almost all the JSON parsers requires a lot of work to be done every time you need to deserialize your a huge chunk of JSON data: you need to read it from disk, parse it and, usually, map raw JSON tree to object instances.

This may be very inefficient and cause unnecessary delays and pauses.

The idea

Let's assume that we have a small JSON:

[
    {"some key": "some value"},
    {"some key": "some value"},
    {"some value": "some key"},
]

Let's build a table for every unique value in our JSON :

Type index Value Is Root
string 0 "some key" No
string 1 "some value" No
object 0 [string:0, string,1] No
object 1 [string:1, string:0] No
array 0 [object:0, object:0, object:1] Yes (file.json)

This way we flattened and deduplicated our JSON.

Streaming

Now we may do manu different things, for example we may stream our table:

string:0 = "some key"
string:1 = "some value"

object:0.size = 2
object:0[string:0] = string:1
object:1[string:1] = string:0

array:0.size = 2
array:0[0] = object:0
array:0[1] = object:1

string:2 = "file.json"

root:0=array.0,string:2

This particular encoding is inefficient but it's streamable and, moreover, we can extend with removal message to support arbitrary updates:

array:0[0] = object:1
array:0[1] = remove

There is an interesting observation: the initial stream entries (when there is no removals) may be safely reordered, though sometimes the receiver would need to store them until it can sort them out.

Binary storage

We may note that the only complex data structures in our "Value" column are lists and (type, index) pairs. Let's call the pairs "references".

A reference can be represented as a pair of integers, so it would have a fixed byte length.

A list of references can be represented as an integer storing list length followed by all the references' bytes. Let's note that such binary structure is indexed, when we know the index of the element we want to access we can do it immediately.

A list of any fixed-size scalar values can be represented the same way.

A list of variable-size values (e.g. a list of strings) can be represented the following way:

  {strings count}{list of string offsets}{all the strings concatenated}

So, ["a", "bb", "ccc"] would become something like 3 0 2 3 a b bb ccc without spaces.

An important fact is that this encoding is indexed too and it can be reused to store any lists of variable-length data.

Additional capabilities over JSON

SICK encoding follows compositional principles of JSON (a set primitive types plus lists and dictionaries), though it is more powerful: it has "reference" type and allows you to encode custom types.

(1) It's easy to note that our table may store circular references, something JSON can't do natively:

Type index Value Is Root
object 0 [string:0, object:1] No
object 1 [string:1, object:0] No

This may be convenient in some complex cases.

(2) Also we may note, that we may happily store multiple json files in one table and have full deduplication over their content. We just need to introduce a separate attribute (is root) storing either nothing or the name of our "root entry" (JSON file).

In real implementation it's more convenient to just create a separate "root" type, the value of a root type should always be a reference to its name and a reference to the actual JSON value we encoded:

Type index Value
string 0 "some key"
string 1 "some value"
string 2 "some value"
object 0 [string:0, string,1]
object 1 [string:1, string:0]
array 0 [object:0, object:0, object:1]
root 0 [string:2, array:0]

(3) We may encode custom scalar data types (e.g. timestamps) natively just by introducing new type tags.

(4) We may even store polymorphic types by introducing new type tags or even new type references.

Implementation

TODO

Streaming

TODO

Efficient binary indexed storage

TODO

Limitations

Current implementation has the following limitations:

  1. Maximum object size: 65534 keys
  2. The order of object keys is not preserved
  3. Maximum amount of array elements: 2^32
  4. Maximum amount of unique values of the same type: 2^32

These limitations may be lifted by using more bytes to store offset pointers and counts on binary level. Though it's hard to imagine a real application which would need that.

Product Compatible and additional computed target framework versions.
.NET net5.0 was computed.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.1 is compatible. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
0.1.9 69 10/24/2024
0.1.9-alpha.101.1.11543131792 43 10/27/2024
0.1.9-alpha.100.1.11543099574 34 10/27/2024
0.1.9-alpha.99.1.11543029531 39 10/27/2024
0.1.9-alpha.97.1.11542766659 35 10/27/2024
0.1.9-alpha.96.1.11542759889 35 10/27/2024
0.1.9-alpha.95.1.11542743035 36 10/27/2024
0.1.9-alpha.92.1.11535380531 35 10/26/2024
0.1.9-alpha.91.1.11534754760 32 10/26/2024
0.1.9-alpha.90.1.11534728272 35 10/26/2024
0.1.9-alpha.84.1.11524147279 33 10/25/2024
0.1.9-alpha.80.1.11501877492 31 10/24/2024
0.1.8 110 9/11/2024
0.1.8-alpha.78.1.11501836223 35 10/24/2024
0.1.8-alpha.77.1.10816114029 53 9/11/2024
0.1.6 248 11/13/2023
0.1.6-alpha.74.1.10815646116 50 9/11/2024
0.1.6-alpha.73.1.10779432710 49 9/9/2024
0.1.6-alpha.72.1.10779398369 47 9/9/2024
0.1.6-alpha.71.1.10779340615 46 9/9/2024
0.1.6-alpha.70.1.10779255916 53 9/9/2024
0.1.6-alpha.69.1.10778956854 48 9/9/2024
0.1.6-alpha.68.1.10778347980 48 9/9/2024
0.1.6-alpha.67.1.10773767841 44 9/9/2024
0.1.6-alpha.66.1.10773391549 48 9/9/2024
0.1.6-alpha.65.1.10309929078 70 8/8/2024
0.1.6-alpha.64.1.9569809415 52 6/18/2024
0.1.6-alpha.63.1.9569252981 50 6/18/2024
0.1.6-alpha.62.1.9569209999 53 6/18/2024
0.1.6-alpha.61.1.7489993321 65 1/11/2024
0.1.5 148 11/2/2023
0.1.5-alpha.60.1.7489990759 62 1/11/2024
0.1.5-alpha.58.1.6855319998 95 11/13/2023
0.1.5-alpha.56.1.6852209177 62 11/13/2023
0.1.5-alpha.55.1.6777279602 66 11/6/2023
0.1.5-alpha.54.1.6777234035 70 11/6/2023
0.1.5-alpha.53.1.6777218278 66 11/6/2023
0.1.5-alpha.52.1.6734224890 65 11/2/2023
0.1.3 153 9/13/2023
0.1.3-alpha.50.1.6174784251 80 9/13/2023
0.1.2 147 9/13/2023
0.1.1 146 9/13/2023
0.1.0-alpha.46.1.6174266386 84 9/13/2023
0.1.0-alpha.45.1.3857949337 99 1/6/2023
0.1.0-alpha.44.2.3849219603 99 1/6/2023
0.1.0-alpha.44.1.3849219603 100 1/5/2023
0.1.0-alpha.42.1.3849045352 95 1/5/2023
0.1.0-alpha.41.3.3848986268 97 1/5/2023
0.1.0-alpha.41.1.3848986268 98 1/5/2023
0.1.0-alpha.39 100 1/5/2023
0.1.0-alpha.38 103 1/5/2023
0.1.0-alpha.37 96 1/5/2023
0.1.0-alpha.36 99 1/5/2023
0.1.0-alpha.35 101 1/4/2023
0.1.0-alpha.34 95 1/4/2023
0.1.0-alpha.33 100 1/4/2023
0.1.0-alpha.32 97 1/4/2023
0.1.0-alpha.31 96 1/4/2023
0.1.0-alpha.30 97 1/4/2023
0.1.0-alpha.29 97 1/4/2023
0.1.0-alpha.28 97 1/4/2023
0.1.0-alpha.27 91 1/4/2023
0.1.0-alpha.26 97 12/29/2022
0.1.0-alpha.25 96 12/29/2022
0.1.0-alpha.24 95 12/29/2022
0.1.0-alpha.23 93 12/29/2022
0.1.0-alpha.22 88 12/23/2022
0.0.2-alpha.21 92 12/23/2022
0.0.2-alpha.20 98 12/21/2022
0.0.2-alpha.16 92 12/21/2022
0.0.2-alpha.15 94 12/21/2022
0.0.2-alpha.14 92 12/21/2022
0.0.2-alpha.4 90 12/21/2022
0.0.2-alpha.3 93 12/21/2022
0.0.2-alpha.2 95 12/21/2022
0.0.2-alpha.1 92 12/21/2022
0.0.2-alpha 129 12/21/2022