Citms.YoloV8 4.1.5

dotnet add package Citms.YoloV8 --version 4.1.5                
NuGet\Install-Package Citms.YoloV8 -Version 4.1.5                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="Citms.YoloV8" Version="4.1.5" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add Citms.YoloV8 --version 4.1.5                
#r "nuget: Citms.YoloV8, 4.1.5"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install Citms.YoloV8 as a Cake Addin
#addin nuget:?package=Citms.YoloV8&version=4.1.5

// Install Citms.YoloV8 as a Cake Tool
#tool nuget:?package=Citms.YoloV8&version=4.1.5                

YOLOv8

Use YOLOv8 in real-time for object detection, instance segmentation, pose estimation and image classification, via ONNX Runtime

Install

The YoloV8 project is available in two nuget packages: YoloV8 and YoloV8.Gpu, if you use with CPU add the YoloV8 package reference to your project (contains reference to Microsoft.ML.OnnxRuntime package)

dotnet add package YoloV8

If you use with GPU you can add the YoloV8.Gpu package reference (contains reference to Microsoft.ML.OnnxRuntime.Gpu package)

dotnet add package YoloV8.Gpu

Use

Export the model from PyTorch to ONNX format:

Run this python code to export the model in ONNX format:

from ultralytics import YOLO

# Load a model
model = YOLO('path/to/best')

# export the model to ONNX format
model.export(format='onnx')

Use in exported model with C#:

using Compunet.YoloV8;
using SixLabors.ImageSharp;

using var predictor = YoloV8Predictor.Create("path/to/model");

var result = predictor.Detect("path/to/image");
// or
var result = await predictor.DetectAsync("path/to/image");

Console.WriteLine(result);

Plotting

You can to plot the input image for preview the model prediction results, this code demonstrates how to perform a prediction, plot the results and save to file:

using Compunet.YoloV8;
using Compunet.YoloV8.Plotting;
using SixLabors.ImageSharp;

using var image = Image.Load("path/to/image");

using var predictor = YoloV8Predictor.Create("path/to/model");

var result = await predictor.PoseAsync(image);

using var plotted = await result.PlotImageAsync(image);

plotted.Save("./pose_demo.jpg")

You can also predict and save to file in one operation:

using Compunet.YoloV8;
using Compunet.YoloV8.Plotting;
using SixLabors.ImageSharp;

using var predictor = YoloV8Predictor.Create("path/to/model");

predictor.PredictAndSaveAsync("path/to/image");

Demo Images:

Detection:

detect-demo!

Pose:

pose-demo!

Segmentation:

seg-demo!

License

MIT License

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
4.1.5 247 4/18/2024