AsyncUtilities 1.1.1

dotnet add package AsyncUtilities --version 1.1.1                
NuGet\Install-Package AsyncUtilities -Version 1.1.1                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="AsyncUtilities" Version="1.1.1" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add AsyncUtilities --version 1.1.1                
#r "nuget: AsyncUtilities, 1.1.1"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install AsyncUtilities as a Cake Addin
#addin nuget:?package=AsyncUtilities&version=1.1.1

// Install AsyncUtilities as a Cake Tool
#tool nuget:?package=AsyncUtilities&version=1.1.1                

AsyncUtilities

NuGet NuGet license

A collection of somewhat useful utilities and extension methods for async programming:

Utilities:

  1. AsyncLock
  2. Striped Lock
  3. TaskEnumerableAwaiter
  4. CancelableTaskCompletionSource

Extension Methods:

  1. ContinueWithSynchronously
  2. TryCompleteFromCompletedTask
  3. ToCancellationTokenSource

<a name="async-lock"/> AsyncLock

When awaiting async operations, there's no thread-affinity (by default). It's common to start the operation in a certain thread, and resume in another. For that reason, all synchronization constructs that are thread-affine (i.e. match the lock with a specific thread) can't be used in an async context. One of these is the simple lock statement (which actually uses Monitor.Enter, Monitor.Exit). For such a case I included AsyncLock which is a simple wrapper over a SemaphoreSlim of 1 (for now, at least):

AsyncLock _lock = new AsyncLock();

async Task ReplaceAsync<T>(string id, T newItem)
{
    using (var dbContext = new DBContext())
    {
        using (await _lock.LockAsync())
        {
            await dbContext.DeleteAsync(id);
            await dbContext.InsertAsync(newItem);
        }
    }
}

<a name="striped-lock"/> Striped Lock

Lock striping is a technique used to reduce contention on a lock by splitting it up to multiple lock instances (stripes) with higher granularity where each key is associated with a certain lock/strip (this, for example, is how locks are used inside ConcurrentDictionary to enable higher concurrency). Using a striped lock is similar in practice to using a Dictionary<TKey, TLock> however that forces the number of locks to match the number of keys, while using a striped lock allows to set the concurrency level independently: A higher degree means more granularity but higher memory consumption and vice versa.

Striped

The Striped generic class allows using any kind of lock (with any kind of key). The only necessary things are:

  • The number of stripes
  • The lock must have a parameterless constructor, or a delegate for creating it is supplied.
  • The key must implement GetHashCode and Equals correctly, or an IEqualityComparer<TKey> be supplied.
ThreadSafeCache<string> _cache = new ThreadSafeCache<string>();
Striped<string, object> _lock = Striped.Create<string, object>(Environment.ProcessorCount);

string GetContent(string filePath)
{
    var content = _cache.Get(filePath);
    if (content != null)
    {
        return content;
    }

    lock (_lock[filePath])
    {
        // Double-checked lock
        content = _cache.Get(filePath);
        if (content != null)
        {
            return content;
        }

        content = File.ReadAllText(filePath);
        _cache.Set(content);
        return content;
    }
}

StripedAsyncLock

Since this library is mainly for asynchronous programming, and you can't use a simple synchronous lock for async methods, there's also a concrete encapsulation for an async lock. It returns an IDisposable so it can be used in a using scope:

ThreadSafeCache<string> _cache = new ThreadSafeCache<string>();
StripedAsyncLock<string> _lock = new StripedAsyncLock<string>(stripes: 100);

async Task<string> GetContentAsync(string filePath)
{
    var content = _cache.Get(filePath);
    if (content != null)
    {
        return content;
    }

    using (await _lock.LockAsync(filePath))
    {
        // Double-checked lock
        content = _cache.Get(filePath);
        if (content != null)
        {
            return content;
        }

        using (var reader = File.OpenText(filePath))
        {
            content = await reader.ReadToEndAsync();
        }

        _cache.Set(content);
        return content;
    }
}

<a name="task-enumerable-awaiter"/> TaskEnumerableAwaiter

TaskEnumerableAwaiter is an awaiter for a collection of tasks. It makes the C# compiler support awaiting a collection of tasks directly instead of calling Task.WhenAll first:

HttpClient _httpClient = new HttpClient();

static async Task DownloadAllAsync()
{
    string[] urls = new[]
    {
        "http://www.google.com",
        "http://www.github.com",
        "http://www.twitter.com"
    };

    string[] strings = await urls.Select(url => _httpClient.GetStringAsync(url));
    foreach (var content in strings)
    {
        Console.WriteLine(content);
    }
}

It supports both IEnumerable<Task> & IEnumerable<Task<TResult>> and using ConfigureAwait(false) to avoid context capturing. I've written about it more extensively here.


<a name="cancelable-task-completion-source"/> CancelableTaskCompletionSource

When you're implementing asynchronous operations yourself you're usually dealing with TaskCompletionSource which allows returning an uncompleted task and completing it in the future with a result, exception or cancellation. CancelableTaskCompletionSource joins together a CancellationToken and a TaskCompletionSource by cancelling the CancelableTaskCompletionSource.Task when the CancellationToken is cancelled. This can be useful when wrapping pre async/await custom asynchronous implementations, for example:

Task<string> OperationAsync(CancellationToken cancellationToken)
{
    var taskCompletionSource = new CancelableTaskCompletionSource<string>(cancellationToken);

    StartAsynchronousOperation(result => taskCompletionSource.SetResult(result));

    return taskCompletionSource.Task;
}

void StartAsynchronousOperation(Action<string> callback)
{
    // ...
}

<a name="extension-methods"/> Extension Methods:

<a name="continue-with-synchronously"/> TaskExtensions.ContinueWithSynchronously

When implementing low-level async constructs, it's common to add a small continuation using Task.ContinueWith instead of using an async method (which adds the state machine overhead). To do that efficiently and safely you need the TaskContinuationOptions.ExecuteSynchronously and make sure it runs on the ThreadPool:

Task.Delay(1000).ContinueWith(
    _ => Console.WriteLine("Done"),
    CancellationToken.None,
    TaskContinuationOptions.ExecuteSynchronously,
    TaskScheduler.Default);

TaskExtensions.ContinueWithSynchronously encapsulates that for you (with all the possible overloads):

Task.Delay(1000).ContinueWithSynchronously(_ => Console.WriteLine("Done"));

<a name="complete-from-completed-task"/> TaskCompletionSourceExtensions.TryCompleteFromCompletedTask

When working with TaskCompletionSource it's common to copy the result (or exception/cancellation) of another task, usually returned from an async method. TryCompleteFromCompletedTask checks the task's state and complete the TaskCompletionSource accordingly. This can be used for example when there's a single worker executing the actual operations one at a time and completing TaskCompletionSource instances that consumers are awaiting:

BlockingCollection<string> _urls = new BlockingCollection<string>();
Queue<TaskCompletionSource<string>> _waiters = new Queue<TaskCompletionSource<string>>();
HttpClient _httpClient = new HttpClient();

async Task DownloadAllAsync()
{
    while (true)
    {
        await DownloadAsync(_urls.Take());
    }
}

async Task DownloadAsync(string url)
{
    Task<string> downloadTask = _httpClient.GetStringAsync(url);
    await downloadTask;

    TaskCompletionSource<string> taskCompletionSource = _waiters.Dequeue();
    taskCompletionSource.TryCompleteFromCompletedTask(downloadTask);
}

<a name="to-cancellation-token-source"/> TaskExtensions.ToCancellationTokenSource

It can sometimes be useful to treat an existing task as a signaling mechanism for cancellation, especially when that task doesn't represent a specific operation but an ongoing state. ToCancellationTokenSource creates a CancellationTokenSource that gets cancelled when the task completes.

For example, TPL Dataflow blocks have a Completion property which is a task to enable the block's consumer to await its completion. If we want to show a loading animation to represent the block's operation, we need to cancel it when the block completes and we know that happened when the Completion task completes:

HttpClient _httpClient = new HttpClient();

async Task<IEnumerable<string>> DownloadAllAsync(IEnumerable<string> urls)
{
    var results = new ConcurrentBag<string>();
    var block = new ActionBlock<string>(async url =>
    {
        var result = await _httpClient.GetStringAsync(url);
        results.Add(result);
    });

    var cancellationToken = block.Completion.ToCancellationTokenSource().Token;
    var loadingAnimation = new LoadingAnimation(cancellationToken);
    loadingAnimation.Show();

    foreach (var url in urls)
    {
        block.Post(url);
    }

    await block.Completion;
    return results;
}

Product Compatible and additional computed target framework versions.
.NET net5.0 is compatible.  net5.0-windows was computed.  net6.0 was computed.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed. 
.NET Core netcoreapp2.0 was computed.  netcoreapp2.1 was computed.  netcoreapp2.2 was computed.  netcoreapp3.0 was computed.  netcoreapp3.1 was computed. 
.NET Standard netstandard2.0 is compatible.  netstandard2.1 was computed. 
.NET Framework net461 was computed.  net462 was computed.  net463 was computed.  net47 was computed.  net471 was computed.  net472 was computed.  net48 was computed.  net481 was computed. 
MonoAndroid monoandroid was computed. 
MonoMac monomac was computed. 
MonoTouch monotouch was computed. 
Tizen tizen40 was computed.  tizen60 was computed. 
Xamarin.iOS xamarinios was computed. 
Xamarin.Mac xamarinmac was computed. 
Xamarin.TVOS xamarintvos was computed. 
Xamarin.WatchOS xamarinwatchos was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.1.1 332,168 1/1/2022
1.0.1 765,732 7/12/2019
1.0.0 676 7/5/2019
0.6.1 125,471 12/9/2017
0.5.0 1,422 10/13/2017
0.4.0 1,263 7/14/2017
0.3.1 1,180 6/4/2017
0.3.0 1,137 6/3/2017
0.3.0-alpha 977 6/3/2017
0.2.0 1,181 6/2/2017
0.1.0 2,355 6/2/2017

Update target frameworks, use latest C# features, add nullable annotations, add mising ConfigureAwaits, hide ValueTask.